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INTRODUCTION

The problem of reconstructing a signal x(t) from a set of sampled values
{x(tn)} [the tn denote the sampling instants] is of interest in both communications
-t = T = constant, for all n, is
n+l n
known as periodic sampling and this special case has received considerable

and control. The type of sampling where t

attention. However, the case of periodic sampling is idealized and is, in practice,
extremely difficult to obtain, as imperfections in the sampling mechanism will
always give some uncertainty about the exact location of each sampling instant

tn. This uncertainty is usually known as ''time-jitter'' and is often described as

a random error in timing. In other words, the exact location of the sampling
instants tn is uncertain or random, and the presumed periodic sampling becomes a
random sampling. It is clear that the time-jitter error will affect the design of
the optimum recovery scheme of x(t) and its effects must be studied. Similarly,
random sampling occurs in sampled-data systems because of inaccuracies in the
equipment which is designed to sample at constant intervals. Random saﬁpling
also can occur in a multi-loop system because of a random time delay which

must elapse before a digital computer again becomes available to carry out
control computations required by a parti;:ular feedback loop of the system. Also,
in radar problems [with nominal scanning period T ], it happens occasionally

that some samples of the return signals are absent or rejected due to excessive
noise or other interference; this is referred to as the miss [or skip] problem

in radar. Thus the availability of data at the nominal sampling instants may only

be described probabilistically.

Furthermore, there also exists the possibility of intentional random sampling.
For instance, it may be convenient to have a random scheme of sampling in
order to reduce the susceptability of some systems to jamming or similar inter-
ference. Also, it could be suggested that, for reasons of economy, a time-shared

digital computer, used for the control of a number of plant processes, may be



made available to any particular process at random, rather than at specified
instants of time. Moreover, it can be shown (ref S.2'.) that random sampling

is of practical interest in determining the power spectra ¢X(w) of a weakly
stationary random process x(t) from a set of samples {x(tn)} . It is well-known
that the determination is unamgibuous if the spectra is band-limited and the
sampling is periodic with a frequency greater than the Nyquist frequency. But
if the spectra is not band-limited or it is not certain whether it is, then there
exists a whole class of power spectra [known as ''aliases' of ¢_(w)] which are
compatible with the periodic sample values. Shapiro and Silverman have shown
however that some random sampling schemes e. g. Poisson sampling will

eliminate the aliases and hence allow an unambiguous recovery of the spectra

¢ ().

The effect of random sampling in association to problems of interpolation
and of sampled-data systems has been partially investigated, leading to a
certain number of results. Kalman (ref K.1. ) was concerned with the stability
of a first-order sampled-data system in which the sampler operates at random
times [ and assuming that the time intervals are independent random variables] .
This synthesis procedure is based on the technique of dynamic programming.
Bergen [ref B. 4, B. 5] has studied the statistics of the output of a linear time-
invariant system which is preceded by a sampler switching at random instants
of time [with the time intervals being independent random variables]. His
synthesis procedure for optimum designs is based on the minimum mean square
error criterion. Balakrishnan (ref B.2.) investigated the problem of optimum
non-realizable interpolation of band-limited signals when time-jitter error is
present during periodic sampling. Brown (ref B.9) generalized slightly the
preceding problem by considering non-band limited signals and two sources of
time- jitter errors [''read-in" jitter and '"'read-out' jitter]. Adomian (ref A.1.),
using'the periodogram method, calculated the spectral density of the output of a

zero-order hold preceded by a sampler which operates at random instants of
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time [the time intervals being independent random variables].

In the present work, among the other things, we have attempted to extend
some of the studies of the preceding authors. Using the minimum mean square
error criterion, we investigate the problem of optimum line ar interpolation |
[non-realizable solutions] of a signal from samples taken at random instént‘s of
time [e. g. nearly-periodic sampling with skips, Poisson sampling, etc....],
with errors in amplitude also present The preceding study is quite simply
performed with the use of an "improper' random process, the random impulse
process defined as s(t) Ez;ooané(t- tn) where the random sampling instants tn
constitute a so-called stationary point process [section 1. 2. ] which is independent
of the stationary random process {an} . Moreover, some of tl:oe statistical
characteristics of ""secondary processes' y(t) defined as y(t) ;___Z_;oo a ntt ),
where n(t, u) denotes a deterministic function, are considered and studied.

As a result, Campbell's theorem is easily obtained. Furthermore, a whole
variety of step-wise random processes are introduced and their second-order
statistics are investigated either in the time-domain or in the frequency domain.
In particular, we consider the statistics of the output of a zero-order hold

[ in a sampled-data system] preceded by a sampler which switches at random
instants of time; the results obtained may be useful for the statistical design

of optimum random sampled-data systems.

In order to carry on the preceding studies, it was necessary to define a
statistical representation of random points on the line, to introduce the concept
of a stationary point process and to study its properties. This concept has been
inspired by the work of McFadden [ref M. 1., M. 2.}, who used a somewhat

different approach from that used here.

Many examples are given.

vii



CHAPTER I

Stationary Point Processes

Summary

This chapter introduces the concept of point processes and defines
the class of stationary point processes. Some general properties are in-
vestigated and particular attention is devoted to the statistical behavior of
the random number of points (or occurrences) which fall in a given time in-
terval. A few methods for generating point processes which are stationary

are indicated and various examples are given.

1.1 Recurrence patterns and point processes

1.1.1 Definitions

In what follows, we attempt to describe statistically the random in-
stants of occurence of an enumerable sequence of specific events (e.g., elec-

trons emitted in a vacuum tube, or customers entering a store).

The arrival pattern: forward point process.

Suppose we choose a fixed instant t and then, without any knowledge of
the sequence of events, inquire about the random time of occurence of the first
event after t. We may denote that instant by t; and by t,, t;... the successive

instants of events in sequence where
tStIStZS-“St (111)

for all n. By definition, the set of random instants {tn}n=1 ) will be called

a forward point process.

At this point, it is of interest to mention that the ordering of events
according to (1.1.1) is not always possible. For example, consider the case
of events occurring at all rational instants of time: those events are countable
but they can not be ordered according to (1.1.1). Such a situation will be unde-~

sirable and, from now on, we shall only consider occurrences satisfying the

-1 -



ordering equation (1.1.1)
Next, we introduce the random intervals

Ln(t) = tn -t (1.1.2)

xn(t) =tn+1 -tn ,n=12,... (1.1.3)

where L;(t) is known as the first passage time and where xn(t) is often called
the inter-arrival time between consecutive events (ref T.2). With these nota-

tions, eqgn. (1.1.1) gives

0= Ly(t) < Lp(t) < - = L (1) (1.1.4)

and it is clear that the arrival pattern of events (or occurrences)is statisti-

cally described by the random process {Ln(t)}n:1 2

Such a random process is constantly used in the study of queueing and
renewal theory (ref F.1,C.1, T. 2, P.2). The most frequent case is the one
where L;(t), %,(t), ... xn(t) are positive, mutually independent random variables

such that all the xn(t) are identically distributed.

The departure pattern: backward point process

In a similar way, in order to describe the departure pattern of this se-
quence of events, we also introduce the concept of a backward point process.

This process is defined by the instants {t_n} where t_1 denotes the

n=1,2..
instant of occurrence of the most recent event before the instant t, and where

t t_3: : .t_ are the backward successive instants
t <...=<t =<t =t . (1.1.5)
-n -2 -1
Let
L (t)=t-t (1.1.6)
-n -n
and

n=12,... . (1.1.7)




Then the departure pattern of events is statistically described by the random

process {L-n(t)}nzl, .

The complete recurrence pattern: point process

Finally, there are situations when one inquires jointly about backward
and forward occurrences. In this case, by using the previous notations, we
are led to the point process {tn}n=+ +, which is described by the random

process {Ln(t)} ,

n=+1,+2, ...

Symmetric point process

If the random processes {Ln(t)} and {L—n(t)}n=i are

n=i,z2,.

statistically identical, we say that the point process {tn}n=i1 2

3 s o0

metric for the instant t.

1.1.2 The number of occurrences in a given time interval

For simplicity, we shall only consider forward occurrences, the exten-
sion to backward occurrences being similar. We shall consistently use the ab-
ridged notation

{Ln(t) < 1}

for the set

{wan(t,w)S-r}, we ,

2 being the basic probability space. As usual, the letters P and E will stand

respectively for probability and expectation.

We denote by Gn( T)t the distribution function associated with the random

variable Ln(t), that is

Gn(~r)t = P[Ln(t) <] . (1. 1. 8)

Because of (1. 1. 4), we have



Gn(~r)t =0, T <0 (1.1.9)

(1. 1. 10)

Let N(t + x, 7) be the random number of events which occur in the interwval

(t+x, t+x+7], x=2 0, 1>0, and let

p(n, T)t+x = P[N(t + x, ) =n]. (1. 1.11)
observing that
{N(t, 7 =0} ={L,(t) > <} (1. 1. 12)

{N(t, ) =n} ={(L (0 = 9L, (0> 7}

={(L_, ®>m-(@ (> n} (1.1.13)
and noticing that
{Lw>-C{L_, > (1. 1.14)
we obtain
p(0, 7), =1 - Gl (1. 1. 15)
p(n, T)t:Gn(T)t —Gn+1(T)t, nz 1. (1. 1. 16)

Similarly, we find

p(0, 7, = PlLy(t) > 7 + x]

o0
+ an P[Lk(t) = x)(\(Lk+1 (t) > 7 +x)] (1.1.17)

p(n, 1), = Pllx<Li(t)=L () =+ (L __ (8 >7+x)]

0
+Zk IP[(Lk(t) SX)n(x<Lk+1(t) =L (0= T+x)ﬂ(Ln+k+1(t)

>r+x)] , n=z1. (1.1.18)




1.1. 3 Conclusions: Example

A comparison of (1.1.16) with (1.1.18) shows that, in general, the ran-
dom variables N(t, v) and N(t + %, 7) are not identically distributed. This re-
sult is obviously expected in many practical situations: for example, the
arrival pattern of customers entering a store may vary considerably at dif-
ferent hours of the day. But, on the other hand, there are many physical
situations in which one feels that the probability structure of the recurrence
pattern for a certain type of event does not vary with time; for instance, this
may be the case when one studies the emission pattern of electrons in a vacu-
um tube, assuming that the tube is in steady-state operation. Consequently,
it is useful to define a concept of stationarity for point processes, and we shall

do so in the next section.

Another point of concern is the following one: in many physical situa-
tions, one would like to think of N(t + x, T) as a finite-valued random variable

so that

p(n, T)t+ =1 (1. 1.19)

0 X

But this condition need not always hold. For example, consider the forward

point process defined as

t =t+a+1—l, n=12,...o (1. 1. 20)
n n

where « is a random variable uniformly distributed between zero and one.

From
L(f)=t -t=a+l-=,n=12. (1. 1. 21)
n n n
we obtain 1
0 ) Ts1l--=
n
G (1) =-r-(1-l),1—l<'r$2—l (1. 1. 22)
n 't n n n
1 s 'r>~2-l
n



Equations (1. 1.15), (1. 1. 16) give
p(n,3), =0 , n=012,... (1. 1. 23)
so that
o0
> p(n,3), =0 (1. 1. 24)
n=o t

thus showing that N(t, 3) is not finite-valued, as could be expected by noting

that the interval (t,t + 3] contains a limit point.

1. 2 Stationary point process

1. 2.1 Definitions

The point process described by {Ln(t)} is called stationary

n=+1,*t2,...
if the joint distribution function of the random variables

{Lnl(t +h), L (t+h),.. .,Lnk(t + h)}

is identical with the joint distribution function of the random variables

{Ln ty , an(t),...,Lnk(t)}

1

for all real values of h and all n, ¢ {il, t2,... }

In a similar way one may define stationarity for the forward point pro-

cess {Ln(t)} and the backward point process {L_n(t)}n=1 )

n=i,2,.

1. 2. 2 Fundamental theorem:

A point process is stationary if, and only if, the associated forward (or

backward) point process is stationary.

Proof:

n) The necessary part is obvious.
s) We have to show that the knowledge of the stationary forward pro-

cess {Ln(t)}»n:l,2 determines that of the process {Ln(t)}n=+1 +,

PR s T 25 00

First, let us determine the distribution function associated with L_n(t).




Letting
‘at least n occurrences
En(t’ T = ,T>0 (1. 2.1)
in the interval (t,t + 7]

and observing that

E_(t-7,1 = {L_n(t) < 1} (1. 2. 2)

E (t-7m = {Ln(t -1) < 1} (1. 2. 3)
we obtain

P[L_(t) s <] =P[L (t-7) = ] (1. 2. 4)

The forward point process is stationary so that Ln(t - 1) does not depend on
its argument (whenever there is no ambiguity, we shall write Ln instead of

Ln(t - -rb. Defining

A

Gn( T) = P[Ln 7] (1. 2. 5)

we obtain

H

P[L_ (t) = 7] = G_(7) (1. 2. 6)

so that the distribution of L_n(t) does not depend on its argument and is the
same as that of Ln.

Next, we consider higher order distribution functions. It will be suf-

ficient to consider an example. For instance

PI(L_ (1) = 7 NL_(8) = = + 72)]

It

PIL_(t) = =] + P[L_(1) s m)\(m<L_(8) < 7 + 72)]

o0
P[L,(t - 7)) = 7] +nZ‘: P[(Ln(t IR DNEEN A
=1

(-rz<Ln+1(t- TI-T2) ST +Tz)(\(Ln+z(t -1 - T2) > Tt T2)]

I

0
P[Lz =< Tl] +I§ P[(I_JnS Tz)n(‘l'z< Ln+1 = T1 + Tzﬂ( Ln+z> T1 + TZ)] (1' 2. 7)

1

This theorem can be intuitively expected from the following argument:

For t = -, the entire point process appears as a forward point process and



since {Ln(t)}n:1 , does not depend on t, one may choose t = - .

2ly e

Notice that although Ln and L_rl are identically distributed, equation
1. 2. 7) sh that, i al, L
( ) shows in gener the processes { n}n=1, . and {L-n}n=1,z, o
are not statistically identical, so that a stationary point process is not neces-

sarily symmetric.
1. 2. 3 Discussion

We would like to show that, in general, it is hard to determine whether
a point process is stationary. Suppose we are given a point process defined by
{Ln(t)}n:+ L4z, ... and we inquire whether this point process is stationary or
not. From the preceding theorem, it is sufficient to determine the random
process {Ln(t + h)}n=1,z, o and verify whether or not the joint distributions of
this random process are independent of h, for all real values of h. This verifi-
cation is usually very difficult. For example, let us determine the distribution

function associated with L,(t + h), where we take h > 0. From the probabilistic

interpretation of
{Lit+n A}

we find that

P[L;(t +h) < 7] = P[h < L,(t) £ v + h]

‘ 0
+
2 PL (1

1A

M \(h < Lot s+ h], (1. 2. 8)

+1

which can be evaluated from the given random process {Ln(t)}n=+1 +,

If the point process is to be stationary, we must obtain
P[L;(t + h) = 7] = P[L,(t) = +].

The difficulties increase considerably when we attempt to determine higher

order distribution functions.

In spite of the preceding pessimistic comments, the class of stationary

point processes is not empty: the most familiar examples include the Poisson
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renewal point process (ref P. 2, T.1,...) and the periodic point process

(periodic occurrences, with a random starting time uniformly distributed

over the period). A few additional examples will be given in section 1. 4.

1. 2. 4 Some general properties of a stationary point process

1. 2. 4.1 First order properties

Equations (1. 2. 5), (1.1.10), (1. 2.1) give

G ., (x =G (x

Gp(x) = P[E (t,x)]

and we let
n occurrences in

A (t,x) = , x> 0.
n

the interval (t,t + x]
Observing that, with h > 0
{x < Li(t) = x +h} = {Adt, xNE; (t + x, h)}
we then have
Gi(x +h) - Gy(x) = PlAot, )NE; (t +x,h)].
In the same way, from

n-1
{x<L (0 =x+h}-= g 1A (t0NE__ (t+xh}
we obtain, the Ak being disjoint,
n-1
G (x +h) - G (x) = k%“o P[A, (t, x){'\En_k(t +x,h)].

Furthermore, denoting

n
S, (%) = JZ>=1 Gj(X)

(1.

(1.

(1.

(L.

(1.

(1.

(1.

- 9)

. 10)

. 11)

.12)

. 13)

. 14)

.15)

. 16)
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we obtain n j-1
S {x+h) -S (x)= EZ]P[A (t, x(\E Lt +x 0]
n n i1 K=o
n j
= 2327 PlA, (t, x)N\E (t + x, h)]
ks, Ik k
n n
= 22 Pla . DNE, (t +x 0]
k=1 j=k -

Properties of Gy(x)

For x; = x;, and any h > 0, we have

{Ao(t, Xz)nEl(t + X2, h}C{AO(t + X2 - Xy, Xl)r\El (t + X2 h)}

hence:

Gy(xz +h) - Gi(xz) = Gy(x; +h) - Gy (%)
X2Z2x3 , h>0
In particular, observe that
Gi(x +h) - Gi(x) = Gy(x) - Gi(x - h) = Gy(x - h) - Gy(x 2h)

X2 2h, h>0

so that letting h -0, we obtain
Gl(x+) = Gy(x) = Gl(X_) , x>0

thus showing that G;(x) is continuous at every x > 0.

(1.

(1.

(1.

. 2.17)

2.18)

2.19)

. 2. 20)

2. 21)

Moreover, G;(x) is absolutely continuous in every closed set not con-

taining the origin. Leto, v, h, hj(j =1,..

v=oc-h>0
n
2o h,

j=1 d

.n) be positive numbers such that

(1.

2. 22)

(1. 2. 23)



- ]_1 -
and assume that
= x <% < < <L
a 1 2 Xk Xn

Using (1. 2.19), we can write

Gi(x; +hy) - Gi(x;) = Gy(v + hy) - Gy (v) (1. 2. 24)
k k-2
Gy(x, + hk) - Gl(xk) < Gy(v +j};€ hJ.) - Gy(v +jZ=)o hj) (1. 2. 25)

where we take hg = 0.
Observing that

n k k-1
22 [Gilv +23h) - Gyv + 25 h)]
k=1 j=o I j=o I

n
= Gylv +Ehj) - Gy (V)

jzo
= GI(U') - GI(O' - h) (1. 2. 26)
we can write
n
2[Gi(x, +h) - Gi(x)] = Gilo) - Gi(o - h) (1. 2. 27)

k=1

By letting h - 0, the right-hand side of this equation tends to zero (¢ > 0 is

a point of continuity for G,(x) ), thereby proving the assertion.

It follows that for x= ¢ > 0

Gi1(x) - Gy(o) = ggl(g)dg (1. 2. 28)
o

where
gi1(t) = Gi(¢) a.e. (1. 2. 29)

Letting ¢ - 0, and g,({) being an integrable fuhction, we obtain

X
Gi(x) = G {0)) + S‘gl(é)dé (1. 2. 30)
0
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In addition, in view of (1. 2.19) we observe that

g:(xz)

IA

gi{x;) a.e. (1. 2. 31)
for x; =2 x,
In other words, g;({) is a monotone non-increasing function.

As a consequence
(ref Z.1, Vol. I or H.1), G;(x) is concave (or convex upwards) and it satisfies

the simplified Jensen inequality,

Gilax + (1 - )yl 2 oGy (%) + (1 - a)G, (y)

(1. 2. 32)
0O<as<l, x>0, y>0.
In particular, lettingy -0
GI(QX) =4 Q‘GI(X) +(1 - Q)G1(0+) (1. 2. 32')
0<ag=1, x>0
and a fortiori
Gilax) 2 oGy (x) (1. 2. 33)
O0<a=1l, x>0.
Properties of Sn(x) and Gn(x)
For x; = x, and any h > 0, we observe that
n
\ A, ()Nt + e, 1}
ik
n
C \j{A. (t +x; - x1,x)\E (t+x,,h)} (1. 2. 34)
~ i-k k
i=k
so that using (1. 2.17), we obtain
Sn(XZ + h) - Sn(Xz) < Sn(Xl + h) - Sn(Xl) (1 2. 35)

Xz 2 Xl,h>0.




-13 -

The situation is the same as in equation (1. 2.19), hence similar results follow:

Sn(x) is concave and

X
S (x) =S (0, +§; s _(£)dg (1.2.36)
where :
s (&) = S (L) a.e. . (1.2.37)
From
G (x) =8 (x -5 _ (x) (1.2.38)

we conclude that each Gn(x) is absolutely continuous for x > 0 and that

X
G (x) = G_(0)) + g g (odL (1.2.39)
0
where
g (0 = Gl'q(t;) a.e. . (1. 2.40)
Notice
g () = s (0) - sn_l(f,) (1.2.41)

so that gn(f,) is a function of bounded variation in every closed set not contain-

ing the origin (difference of two bounded non-increasing functions).

1.2.4.2 Higher order properties

As an example, consider the joint distribution function
GI,Z(X, Y) F P[Ll(t) = XﬁLZ(t) = y]. (].. 2. 4. Z)
Observe that

Gua(x+hy, y+h;) - Gua(xy) € {Gyx+h)) - Cy(x)} +{Galy+hy) - Goy)}, (1.2.43)

hy, he ) 0,

and consequently that Gy, ,(x, y) is continuous for x, y> 0. But Gy,x, y) may
not be absolutely continuous; an example is provided by the stationary periodic

point process (defined in sectionl.4.1).
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Next, interpreting equation (1. 2.34) and choosingk =1, n = 2, we
obtain

{Gi(xz +h) - Gy(x2)} +{Gp 2%z %z +h) - Gr2lxs, x2)}
<{Gi(x; +h) - Gy(x)} +{Gp2oxy, % +h) - Gpa2(xy, x)} (1.2.44)

X2 = X1 h>0
which is somewhat similar to (1.2.35).

Following the same line of approach, one obtains similar properties

for higher-order distributions functions.

1.3 The number of occurrences generated by a stationary point process in a

given time interval

Because of stationarity, equations (1.1.15) and (1.1.16) do not depend on

t. Therefore

p(0, 7) =1 - G,(7) (1.3.1)

p(n, 1) = G _(7) - Gn+1('r) (1.3.2)
where

p(n, 7) = P[N(t, 1) = n] . (1.3.3)

Whenever there is no ambiguity, the notation N(1) will be used instead of
N(t, 7).

The following lemmas will be used later on.
Lemma l: Gnp(271) = ZGn(-r) . (1.3.4)

Using (1. 2.1), (1.2.10) and observing that Epnl(t, ZT)(En(t, MNJEq(t+ 7, 7)

we arrive at (1. 3.4).

Lemma 2: If lim n)\G (t) =0 , X = 0 then lim n)\G (r) =0. (1.3.5)
—_— n - zn n - n

It is sufficient to show that (1.3.5) holds when n is odd; in view of
(1.2.9), we observe that
N NA
(2k +1) sz+1('r) =3k sz(‘r)
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from which the assertion follows.
Lemma 3: If, for > 0, h> 0, we let

Sn(T + h) - Sn(-r)
h

Vn('r, h) = (1.3.6)

where Sn( 7) is defined by (1. 2.16), (1. 2.36), then Vn( 7,h) is monotone non-

decreasing in the three variables as n increases, T decreases and h decreases.

Let 71, 7z, h;, h, be positive numbers such that v, £ 75, h; < h,.

Writing
h, - h - h
Sn(‘l’z +h) = Sn{—'z—h—z—l T2 +Hi“('fz Jrhz)] ,

the Jensen inequality (1.2.32) gives

h, -h h
Sn(Tz +hy) 2 —Evlsn('l’z) + h—;_ Sn(Tz +h,)

or
Sn("’z +h,) - Sn("'z) . Sn(Tz +h,) - Sn(‘l’z)

h, h,

Because of (1. 2.35)
Sn(‘l'z +hy) - Sn(Tz) _ Sn('rl+h1) -Sn(‘rl)

and a fortiori

in other words

Vn(Tz:hi)SVnﬂ(Tl:hl) (1.3.7)

TISTz,hlshz

In what follows, we consider the behavior of the random variable N(7).
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Theorem 1:
i) N(7) is finite valued if, and only if

lim G (1) = 0. (1.3.8)

n—>o

ii) If for some value r¢> 0

lim Gn(To) =0 (1.3.9)

n=ow
then (1. 3.8) holds for all 1< «.

Proof.

i} From (1.3.1), (1.3.2), we obtain
n
>oplk,7) =1-G_ (7)
k=0

and so

!
—

p(k, 1) =
0

AN

if, and only if
lim Gn(-r) =0,

n -—>o

ii) In view of

Gn('l'l) = Gn(‘fz) s T1 = T2

it will be enough to show that (1.3.9) implies 1lim Gn(Z-ro) = 0 (since from
n—>oo
there, one shows that for every K =1, 2, ...

lim Gn(ZKTo) =0 ).

n —>ow

Because of lemmal

. -0
nh—?;o Gzn(ZTo)

and lemma 2 (with X = 0) completes the proof.
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Theorem 2:

E[N(T)M]<oo, Me (1,2,...) (1.
if, and only if
e}
SM - MG (7)< w. (L.
n=1
Moreover o
M M M
E[N(m) ] = D™ -(n-171G () - (1.
n-=i
Proof.
Consider the partial sums
n
M M
U =2,k -(kk-1)1G (1.
n k=1 k

1

where for simplicity we abbreviate Gk( T) by G

(1. 3.14) leads to

I Comparing (1. 3.13) and

M

Wn+n Gn+ :Un (1.

1

and a fortiori

W =U_ . (1.

s) (1. 3.11) implies that

lim G (7)) =0
n—-ow o

so that N(T) is finite valued; moreover, because of (1. 3.16)
lim W < o
n—-w 1

or

E[N( T)M] < oo

n
M
élk (G - G ,,) (1.

.10)

. 11)

. 12)

.13)

. 14)

.15)

.16)
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n) Conversely, (1.3.10) implies

lim G () =0 (Theorem 1) (1.3.17)
n - n
and
0
M
- < . ..
Z(Gy - Gy )< (1.3.18)

Equation (1.3.18) implies that for every arbitrary given ¢ > 0 and all p, we

may write
n+p

M
< - <
0 g;‘nk [G, -G, T<e

for n > N{¢)

or rearranging the terms

}<e

n+p
M M M M M
< - + -(k - -[(n+ -
0% {n [Gn Gn+p+1]} {kzznﬂ[k (ke -1) ]Gk (n+p) " -n ]Gn+p+1
for n > N(e) (1. 3.19)
In view of (1. 2. 9), the terms { } are positive, so that (1. 3.19) leads to
M
< - < .3.20
0< n [Grl Gn+p+1] € (1 20)
for n > N(e)
Letting p = «», and using (1. 3.17) we obtain
nMGn<e, n > N(e)
or that
. M
lim n Gn(-r) =0 (1. 3. 21)

n—»>oo

As a consequence, from (1. 3.15)

lim U = lim W <o
n—+o ) n
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or that .
Zl[nM - (n -I)M]Gn(‘r) = E[N(T)M] , (1. 3. 22)
n:

thus completing the proof.

The cases M =1, M = 2 are of particular interest and deserve special

attention.
Theorem 3: 1If for some 7= 14> 0
i) E[N(7o)] < o (1. 3. 23)

or
ii) E[N{7¢)?%] < w0 (1. 3. 24)

then the same properties hold for all T < w.

Proof.
For similar reasons as in part ii) of theorem 1, it will be sufficient to

show that these properties hold for v = 27 . Two different proofs will be given.

a) From

N(t, 270) = N(t, 7o) + N(t + 79, To) (1. 3. 25)

it follows

i) E[N(27¢)] = 2E[N(10)] < (1. 3. 26)
i) E[N(270)?] = 2E[N(70) ]+ E[N(t, To)N(t + 1o, T0) ]
and because of the Schwarz inequality

E[N(270)% <4E[N(79)2]% (1. 3. 27)
thus completing the proof.

b) Using (1. 3. 22) with M =1, M = 2, we have



o0
E[N(to9)] = 22 G_(70o) (1. 3. 28)
n:

[o o}
E[N(o)®] =2 (2n - 1) G (7o) (1. 3. 29)
n:

i) Consider the partial sum
n
Sn(T) = Gk(T)
k=1

Sn( 7) is concave and satisfies an inequality similar to (1. 2. 33) so that

Sn(ZTo) = an(‘ro)
and consequently

E[N(27¢)] = lim S (279 <o .

n—>oo n
ii} Let
v (270) = 2, (2k - )G, (270) - (1. 3.30)
2 k
k=1

In view of (1. 2. 9), we obtain

V2n+1 ( ZTO)

IA

n
G,(27o) + 8 \2;1 szk(zTo)
and, a fortiori, from lemmal

Vzn+1 (270)

1A

n
G, (270) +16 2 kG, (o).
: k=1 k

Because of (1. 3. 24), (1. 3. 29) the right-hand side converges as n = «; hence

lim V_ . (27 <w
n-—>oo -+

and as a result

E[N(Z'ro)z] < o0 .
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Theorem 4:

E[N(7)] < o (1.
if, and only if
B = f} lim ng—(il—) < o (1
n=1 h~0 h . .
Moreover
E[N(7)] = B~ (1.

0
» g (x) = B a.e. (1.
n-=1

where the gn(x) are density functions defined as

gn(x) = Gr'l(x) a.e. . (1.

Finally, we can write
g1(x) = Bl - Fy(x)] (1.
g (x) = BlF _ (x) -F (x)] (1.

where the Fn(x) are distribution functions having the following properties:

o0
= B
SleFn(x) = B (1.
0
lim F (x) =0 (1.
n-oo
1 % G (h)
lim F (x) =1 - — 1i _ . (1.
x>0, n() B k=1 h—-0, h
Proof.
n) From (1. 3. 28), we have
o0
E[N(7)] = E G (1) <o . (1.
n=1 1

This convergence is uniform for v = 7¢ for arbitrary o < w. In fact

. 31)

.32)

.33)

. 34)

. 35)

. 36)

. 37)

. 38)

. 39)

. 40)

. 41)
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Gn(‘r) s Gn(To) , T T, (1. 3. 42)

Gn('ro) = E[N(719)] < (1. 3. 43)
1

S8

from which (Weierstrass' M-test) (1. 3. 41) converges uniformly for + = To.
On the other hand, we have seen that the functions Gn( T) are continuous

for > 0. It follows (ref K. 2, page 339) that E[N(r)] is continuous for = > 0.
Moreover '

N(t,Tl +Tz) =N(t,T1)+N(t+T1,T2), "|'1> 0, Tz>0
leads to the functional equation
E[N(t; + 72)] = E[N(7,)] + E[NT;)]

which admits only one continuous solution (it is interesting to note that there
are infinitely many discontinuous solutions; see Hamel functions in ref W. 4),

namely

E[N(7)] = Z‘ G (1) = pr (1. 3. 44)

where B is some positive constant. The convergence béing uniform, it

follows

o0
Z lim G (7) = 11rr6 nZ:DIGD(T). (1. 3. 45)

n=;y >

Thus

o0
2 G (04) =0 (1. 3. 46)
n=i

or what is equivalent, in view of (1. 2. 9),
=0 . (1. 3. 47)

Next, as a result of lemma 3, we can apply convergence theorems to
monotone functions or series (ref H. 3, pages 414-5 vol I, page 47 vol II)

so that

lim lim lim V (T, h) = lim lim lim V (T, h) (1. 3. 48)

n—+ow h—ow T—>00 h—-0 n»w 0
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or S (h) S_(h)
lim lim -2 = lim lim ——
n-w h—0 h h—-0 n—w
and hence © G (h) © Gn(h)
lim 32— =1lim ), — = B. (1. 3. 49)
n=1 h_"o h h—>0 n=1 h

This result may also be obtained by using uniform convergence properties as

in (1. 3. 45).

s) We know that Sn( 1) is concave and satisfies an inequality similar to
(1. 2. 33), consequently
Sn( T) Sn(h)

< <
— = ” , h=<r, (1. 3. 50)
In particular
S () S_(b)
< 1
T 1’111_{18 h ’
or
— G < , lim —— 1.3.51
T k=1 7 k=1 h=0 h ( )

Letting n = 0, and because of (1. 3.32) we conclude that
[e 0]
E[N(n] = 27 G (7) <
k=1 k

thus proving (1. 3. 31).

Next, we consider

o0
2 G (x) = px. (1. 3. 52)
n=1 B

Since the Gn(x) are monotone non-decreasing, Fubini's derivation theorem
applies (ref R. 2, page 11), that is derivation term by term is permissible

a. e., and hence

1gn(X) = B a. e., (1. 3. 53)

WL



- 24 -

where

gn(x) = Gr'l(x) a. e.

Because of (1. 2. 30), (1. 2. 39), (1. 3. 47) we obtain

-
Gy(T) = §g1 (x)dx (1. 3. 54)
0
.
Gn(-r) = S‘gn(x)dx (1. 3. 55)

thus showing that the g (x) are density functions.
Let us first consider g;(x). Because of (1. 2. 31) and (1. 3. 53), we may
let
gi(x) = B[1 - Fi(x)], x>0 (1. 3. 56)

and observing that the function F;(x) is non-decreasing, positive and bounded
by one. More precisely, we want to show that F; (x) may be considered as a

distribution function having a positive finite mean: the fact that

0
S‘gl(x)dx =1 (1. 3. 57)
0
implies that for arbitrary ¢ > 0, we may write
X2
0= S gy (x)dx < e
X1 (1. 3. 58)

for x, 2 x; > x(e€)

~and a fortiori

0~<-(X2 -Xl)gl(XZ) <e€
(1. 3. 59)
for X1 2 X4 > X(G)

since g;(x) is non-increasing.
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Letting X, - %y = 1, we see that
0=gi(x2)< e

for x; > X(e) +1

so that lim g (x) = 0
X—>00
and, from (1. 3. 56),
lim F,(x) = 1. (1. 3. 60)
X—>00
Next, taking x, = 2x;, we see that
0 < ngl(XZ) < 2e
for' X2 > ZX(G)
so that lim xg(x) = 0
X0
and an integration by parts of (1. 3. 57) gives
o0
1
g x dF;(x) = e (1. 3. 61)
0
As a result of lemma 3, we can write
lim lim V;(v,h) = lim lim V;(7, h)
h—-0 70 70 h—0
or
: Gy (h) _
S = g, (0
hl_lfél H g1(0)
that is
1 . G, (h)
F.(0) =1~-—= lim ——— 1. 3.62
We next consider the more general case. Using (1. 2. 37), we let
sn(x) = B[l - Fn(x)] (1. 3. 63)

and since sn(x) is non-increasing we have the same situation as with g;(x).
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We are thus led to similar results, namely

and

Moreover

From

we obtain

and observe that

lim F (x) =1
x> I

o0

. n
S.xan(x) = E

0

1 n Gk(h)
0 = - — ————
Fal®4) B kZ:'l o D
n
sn(X) = kZ:)l gk(X)
gn(X) = g[F l(X) -F (%]

Fn+1(x) < Fn(x) .

Finally, because of (1. 3. 53), we obtain

lim Fn(x) =0 ,

n—+oo

thus completing the proof.

An intuitive interpretation of the Fn(x) will be given in the appendix B.

Theorem 5: If

then

where the Fn(x) are the distribution functions defined in theorem 4.

Moreover

E[N(T) < w

0
H(x) = ), F (x) <
n-=1

.
E[N(7)2] = pr + Zﬁg H(x) dx
0

(1. 3. 64)
(1. 3. 65)
(1. 3. 66)
(1. 3. 67)
(1. 3. 68)
(1. 3. 69)
(1. 3. 70)
(1. 3. 71)
(1. 3.72)
(1. 3.73)
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and
[o20]
E fn(x) < oo a. e. (1. 3. 74)
n=i
where
= 1
fn(x) Fn(x) a. e. (1. 3. 75)
Proof.
From (1. 3. 29), we have
o0
> (2n-1)G (7} = E[N(T)?] < » (1. 3. 76)
n=1
or

.
§2n-1 (x)dx = E[N(7T)?] € w.
1
0

L

Combining Beppo-Levi's and Fubini's derivation theorems (ref R. 2 pages

11, 35), we obtain

g} (2n - Dg (%) = e(x) < » a.e., (1. 3.77)
n=1 n
where d
e(x) = = {E[N(x)z]} a.e.,
and in addition that T
E[N(7)%] = §e(x)dx (1. 3. 78)
0

thus showing that the function E[N(1)?] is absolutely continuous for T < .

On the other hand, using (1. 3. 36), (1. 3. 37), we can write

0
(2n - g (x) = Bll - Fa(x) + 25 (2n - 1){Fn_1(x) —Fn(x)}] (1. 3.79)
n-=z

S8

1

Using properties (1. 3. 69) and (1. 3. 70) and the hypothesis (1. 3. 71) it may be

shown (as in theorem 2), that

lim nFn(x) =0 {1. 3. 80)

n->oo
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and

o0
2o (2n-1g
n-=l

so that

[¢'e]
H(x) = 2. F (x) <
n=1 10

s[1+ZZF (x)]

0

(1. 3.

(1. 3. 81)

82)

This function H(x) appears similar to the so-called ''renewal function'' defined

in ref M. 1, pages 364-5.

Using (1. 3. 78) and (1. 3. 81), we arrive at

E[N(T)%] = BT + 2 §H(X) dx (L 3.
0
which is analogous to equation (3. 4), page 370, ref M. 1.
Applying once more Fubini's derivation theorem to (1. 3. 82), we
obtain
o0
2, f(x) = h(x) <o a. e. (1. 3.
n=1 1
where
f (%) F;l(x) h(x) = H'(x) a.e
Theorem 6:
i) E[N(T)M] < o (L. 3.
forallM =1,2,...
if, and only if
lim nKG (v) =0 (1. 3
n-—-oo n
forall K=12,...
ii) If for some value ¢ > 0
K -
llmnG(-ro)—O K=1,2, (1. 3.

n-+oo

then (1. 3. 86) holds for all T < o.

Proof.

i) The necessary part was already seen in (1. 3. 21).

84)

85)

. 86)

87)

For the converse
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we have to show that

= M
N(T) Z: n p(n, 1) <o
n-=i

Choosing K = M + 2, (1. 3. 86) implies that for arbitrary ¢ > 0

0"G (1) <¢, nz N, K) (1 3. 88)
and consequently that
o o] o0
E nM p(n, 1) < E nMGn( T)
n=N(e, K) n=N(e, K)

& €
< 2 7
n=N(e, k)
0 2
1 T
<e€ Z — T € — .
PETR 6

ii) It is sufficient to show that (1. 3. 87) implies

lim n G (219) =0, (1. 3. 89)

n—+co

which is obtained by applying successively lemma 1 and lemma 2 to nKGn( To).

Conclusions

For stationary point processes we have observed the following points
of interest:
i) The distribution functions Gn( T) are absolutely continuous, except

perhaps at the origin. In addition, for every n, the partial sum

S (-r) = Z: G ( is a concave function.
k=1

ii) If for some T =T¢> 0
E[N(7)] < o (1. 3. 90)

then the same holds for all T <o, which further implies that the Gn( T) are

absolutely continuous everywhere. Then
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0
P Gn('r) = BT,
A=

where P is a positive constant (Notice that the case B = 0 corresponds to an
empty point process). Moreover, the density functions gn(x) = Gl'q(x) a. e.
have a noteworthy structure in terms of distribution functions Fn(x) having
certain analogies with the Gn(x) [compare (1. 3. 69), (1. 3. 70) with (1. 2. 9),

(1. 3. 8)). It was also shown that (1. 3. 90) is equivalent to

) Gn(h)
. lim < o0. (1. 3.91)
n=1 h-0
iii) If for some T = 10> 0
E[N(70)%] < o (1. 3.92)

then the same property holds for all + <» (Theorem 3). In addition, the
function E[N(T) 2] is absolutely continuous for v < « and is entirely expressed
in terms of the Fn(x), as was seen in theorem 5 (similarly, one can express

higher order moments E[N(T)M] », M2 3 in terms of the Fn(x) ).

iv) The property
lim nKGn(To) = 0, To> 0, K =1, 2,---

n-—-oo
is equivalent to the existence of all moments.

Since we are dealing with non-negative random variables, it will be
useful to rewrite (1. 3.1), (1. 3. 2),(1.3.36),(1.3.37) in terms of Laplace-Stieltjes

transforms (ref W.1). Letting
o0

g (s) =§ ™% aG_(x) (1. 3.93)
o_
o0
p*(n, s) = S‘G-STp(n, ) dr (1. 3.94)
0
o0
f:(s) = ge-sxan(x) (1. 3. 95)

o_

we obtain
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ate 1 - *
p*(0, 5) = ——E1ls) (1
S
ghs) - g, (s)
s n n+i
p(n,s) = {1
S
and sk
* 1-1
gi(s) = 5———1@—)‘ (1.
S
£ (s) - (s
g¥s) = p nt® T ). (L.
n s
1. 4 Examples of stationary point processes
1. 4.1 The periodic point process
This well-known stationary point process is defined as
Ln=(n~1)T+a , n=12,... (1.

where T is a positive constant called the period and where « is a random

variable uniformly distributed in the interval (0, T]. Observe that

0 , 7T=(n-1T
G (7 ={alr - (n-DT] , (n-DT<7snT (L
1 , T>nT
or
-sT .
& - _]._ l1-e 'S(n‘fl)T
gn(s) T 5 e (1.

It follows from theorem 6, that N(1) has finite moments of all orders as

expected.

1. 4. 2 The Poisson point process

This symmetric stationary point process is also well-known (ref F.

P.2, T.1), and is defined as

L =L1+X1 +"'+X
n n-i

where L, %x;,... x _, are independent random variables, identically

.3.96)

.3.97)

3.98)

3.99)

4.1)

4. 2)

4;3)



- 32 -

distributed with density function

gi{x) = f;(x) = ﬁe'ﬁx , B> 0 (1. 4. 5)
so that
g:}=(s) - E[e‘SLn]
n
n
={BES} : (1. 4. 6)
or that
g1 = B (0" e P (1 4.7)

Using theorem 6, one shows that N(7), T <o has finite moments of all orders.

In addition, we observe that

%
nZ=>1 g (1) =g
E[N(7)] = g7

and (1. 3. 76) leads to
E[N(7)?] = pr + g*+* . (1. 4. 8)

The Poisson point process is often called a 'purely'’ random process
p p p y p

or a process with 'no memory' since it can be shown that the numbers of

occurrences in non-overlapping intervals are independent. The instants of

emission of the electrons in a vacuum tube constitute a Poisson point process.

1. 4.3 The zero-crossings of the Ornstein-Uhlenbeck process

In this example the stationary point process {tn} is generated by the

zero-crossings of a symmetric stationary Gaussian Markov process x(t), i.e.:

t € {x(t) = 0} . (1. 4. 9)
This point process has been studied by various authors (see the list of refer-
ences in S. 3, M.1, L. 3) and it has been shown that

Gi(7) =1 - 1% Arc sin e . (1. 4.10)




1t follows that
lim —— = w 1.4.11
£25. Th ( )
and as a result of theorem 4, we obtain

E[N(T)] = . (1. 4.12)

It is of interest to observe that this result did not require the knowledge of
all the Gn(-r), n 2z 2. In fact, (1. 4.12) is well-known and has been usually de-

rived by different methods.

1. 4.4 A stationary point process with periodic limit points

On the interval [k, k +1], k = 0, +1, +2, we define the set of points

1.k
T, - {tm} (1. 4.13)
where
tk =k--1-—, m=2,3,.. . (1. 4. 14)
m m

Denoting by ¢ a random variable uniformly distributed between zero and one,

the point process generated from the set

<0
T=>=400Tk+a (1. 4.15)

is stationary. Then, we obtain

Gn(1+e)=1,e>0, n=12... (1. 4.16)
and theorem 1 leads to

N(1 +e) =, (1. 4.17)
the result naturally expected. We should note here that the behavior of

Gy(7) for T = 3 requires a more involved calculation. It has been found that

ym S o (1. 4.18)

and, in view of theorem 4, we conclude
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E[N(7)] <,
as it should be.

1. 4. 5 Stationary point processes with skips

Let us consider a stationary point process {tn} where the tn denote
the intended instants for occurrence of events. Suppose that at each scheduled
instant tn’ the probability of skipping the event is q <1, and assume that all the
skips occur independently. The remaining points, {tl"l}’ constitute a new
stationary point process which is called a stationary point process with skips.

We shall now relate the two point processes.

Using the usual notations, we can write

, 0
P[L;< ] =, P[L_<+]P[t, =t_] (1. 4.19)
n=i n n
and since
Plty =t 1=q" '(1-q (1. 4. 20)
we obtain
! — n
Gy(7) =(1 - q g;oq Gr, (% (1. 4. 21)
or ‘
T = _ n s
g7 (s) =(1 - q) nEzoq g4 (S) (1. 4. 22)

thus giving the distribution function for the first passage time in the point

process with skips. Observe that

lim Gy(7) = (1 - @) lim lim Eq G ( T)

T 00 T>00 k—>00 I1=0
k
=(1 - g lim lim EqG ( T)
k—+w T n=o
X n
(1-9 2749
n=o

as it should.
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More generally we have

m skips in

] (1. 4. 23)

o0
1 < = < LI
P[Ln N T] IEZF[Ler T] P [tn tn+mn m+n-1 trials

and since
ro m skips in -1 o n-i _4p-1 m
P [tn tn+m[\ “ l-qcC,  (1-9" g7 (L.4.29)
n+m-1 trials
where
k _ n!
Cn T KR (1.4.25)
it follows that
o0
, — 1 . 0 m_n-1 26
G (1) =(1-q mE:oq Coimot ™ (1.4.26)
or
1 st n x m n_l e
g, (8 =(-a 247 C . g 0. (1.4.27)
Higher-order distribution functions can be calculated in a similar
way. Furthermore, if L;, x,,.. X (xn = Ln+1 - Ln) are independent random

variables such that all the x are identically distributed according to

£] (s) = E[e”%*n], (1.4.28)
then the L{, Xy, .. Xr'1 are independent and the Xg are identically distributed,
and we have

9 K s
gt (s) = (1 - q—8LlE (1.4.29)
1- qf;ﬂ(s)

£1(s)

i _ -SXfyq _ 1 - q) —11(8)
() = BTN = (- @) e

(1.4.30)

Example 1: The Poisson point process with skips

Applying (1. 4. 5) to the preceding equations, we obtain
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133 _ (1 - Q)B

gr(s) = ff"ls) = —7— QP (1.4.31)

showing that the Poisson point proc ess with skips is again a Poisson point

process with parameter (1 - q)f. This result is well-known (ref P. 2).

Example 2: The periodic point process with skips

Using (1.4.1), (1.4.3), equation (1.4.29), (1.4.30) lead to

l1-qg11 ewST
13k _i- -
gi1"(s) = = =T (1.4.32)
1 -qe
L e—sT
£;°(s) =(1 - q — (1.4.33)
-sT
1 - qe

We note that a point process with skips could constitute a model for a piece
of equipment designed to operate at scheduled instants of time, but which,

for some reason, occasionally fails to do so.

1.4.6 Stationary point process with scheduled skips

Let the {tn} constitute a stationary point process. Assume that every
other™® occurrence (or event) is skipped; this generates a new stationary point

process {tﬂ} which can be related to {tn}. For instance,

'

P[L; s 7] = P[L; = 7]P[t; =t,]+ P[L, s 7]P[t; = t;],

that is
Gy (1) = #{Gy (1) + Ga(D} (1.4.34)
gr(s) = z{g%(s) + gi(a)} . (1.4.35)
Also
Gl =z2{G, (0+G (0} (1. 4.36)
gr';k(s) = %{g;;’;_l(S) + g;:;(s)} . (1.4.37)

*A more general case is obtained by skipping every k other occurrences
(here k =1).
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Similarly, higher-order distribution can be calculated. Furthermore, if the

Ly, x1,X;...%X, are independent random variables such that all the x, are

n
identically distributed with

£(s) = Ele”**0] (1.4.38)
then the same properties hold for L;, x;, .. °X1'1 and

g:%(s) = 3¢5 (s){1 + ()} (1.4.39)

f1(s) = Ele”1] = {£()}? (1. 4. 40)

Example: The Poisson point process.

In this case, we obtain

1ok _ B(ZB + S)

e1'(s) = ST (1.4.41)
"k ﬁ
f,%(s) :{{3+s}2 (1.4.42)

1.4.7 Stationary point process with jitter

Let the {tn} constitute a stationary point process and suppose that {en}
denotes a stationary random process which is independent of the tn“ The set
{tn + ‘n} generates a new stationary point process {tr'l} which can be defined
in terms of the {tn} and {en} [observe that the point process {tr'l} is obtained
by re-ordering the set {tn + cn} and this may be sometimes difficult]. Let

us consider an example
Example: Nearly-periodic point process

We assume that the {tn} constitute a periodic point process defined by

equation (1. 4. 1) and that
-T < h <0

with probability one.
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We can write

P[L; = 7] = P[0 < a+¢; < 1] +P[T+a+e; = t)\a+e; =0)] (1. 4. 44)
in view of the fact that t; could be either t, +¢, ort, +¢,. Similarly
P[L! = 7] = Pln-DT+a+e =\ (a+e > 0]
+ P[(nT +a+e_, < e +e; = 0)] (1. 4. 45)
In an analogous way, higher-order distribution functions can be calculated.

It is of interest to observe that a stationary point process with jitter
can be taken as a model for a situation when time-jitter errors are introduced

in a system which is scheduled to operate at intended instants of time tn.




CHAPTER 11

Secondary Processes and Random Sanpling

Summary

Following a terminology used by Takacs (ref T.1), the random process

e o]

y{t) =25 a nit,t) (2.0.1)
n n

n=-w
will be called a secondary process; here, n(t, u) denotes a deterministic function
and we assume that the tn, a constitute respectively a stationary point process
{tn} and a stationary random process {an} which are independent. Whenever
n(t, u) = n(t - u) i. e.,
o0
y(t) = ;‘ a, it - tn) (2.0.2)

n=-00

we say that y(t) is a stationary secondary process. Such processes are common
in modern electronic systems; a classical case is provided by the shot effect
(ref D.1., L.1., and specially ref B. 8.). Another familiar example of a secondary

process is given by the cardinal series

o0 sin =2 (t-t)
y(t) - Z wZ n
n==-o00 70 (t -t )

. 2
where the tn constitute a periodic point process with period ;TL
]

Let us consider a reciprocal situation: suppose that a continuous
parameter random process x(t) has been sampled at instants tn [the tn constitute
a stationary point process], thus leading to a set of samples {x(tn}; the problem
of optimum linear interpolation consists of finding a deterministic function h(t)

such that

x(t) =) x(tn) h(t -t ) (2.0.3)
n=-oo

represents the ''best' recovery of x(t).

Problems of the types indicated are in general difficult to solve. By

-39 -
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introducing an "improper' random process, and by using some heuristic
reasoning, in this chapter we suggest a possible approach to the study of

(2.0.1), (2.0.2) and (2.0.3).

2.1 The z-process

2.1.1 Definition

Let us consider an enumerable sequence of rectangular pulses, with
trailing edge occurring at the instant tn [the tn constitute a stationary point
process]. Let d be a positive constant, and assume that the width and height
of the pulse at tn are respectively d and idr—l [the random process {an} is sta-
tionary]. If t, denotes the first passage time after a fixed instant t, we define

a random process

";—1 ift, -t=d
z(t) = (2.1.1)
0 ift; -t>d

which we call the z-process. We shall assume that {tn} is such that

11mw=ﬁ (2.1.2)
h=0 D
lim G_zh(lj}) = 0 (2.1.3)
h-0
and in view of (1. 3.33), it follows that
0
E(N(1] =2 G _(7) = Br . (2.1.4)
Observe that if the pulses do not overlap (with probability one),
equation (2.1.1) is equivalent to
o]
z(t) = D) a p(t - t) {(2.1.5)
n=-ouw
where p(t) denotes a rectangular pulse of width d and height _cll_ . Moreover,

as d - 0, we obtain the "improper' random process
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o0

s(t) :dli%l z(1) :nzzw ané(t - tn) (2.1.6)

which consists of an infinite train of impulses (delta-functions) occurring at

random instant tn with random intensity a .

2.1,2 Statistical properties

In view of the preceding definition, the random process z(t} is stationary
(in the strict sense). The following study will be limited to first and second
order statistics.

First-order statistics

We have
Elz(t)] = E[ 3] Plt; - t = d]
that is
E=§G1(d) (2.1.7)
where
z = E[z(t)] (2.1.8)
a = E[an] (2.1.9)
Second-order statistics
Similarly,
2
E[z(t)2] = E[Z—;] Plt, -t=<d] i.e.
(0)
R (0) = £51 Gi(a) (2.1.10)
where
RZ(-r‘) = E[z(t) z(t + 7] (2.1.11)
p(n) = E[ajaj+n] . (2.1.12)

Next, we may consider RZ(T) where without loss of generality we assume the

argument T positive. Denoting by {tn}n=1 R the forward point process for

the instant t, and by t; the first passage time after t + v, it is clear that t;
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could be either t, ort; ort;... . Letting
Ly =t -t Ly =t; - (t+7), (2.1.13)
we define the joint event

={(L, s\, = a\t) = t - (2.1.14)

The Bn being disjoint and observing that

Elz(t) 2{t + 7 /B_] = pc(;;) (2.1.15)
it follows that ©
1
R_(7) = 75 :L,: n) P[B_]. (2.1.16)

This correlation function can be evaluated from the process {Ln} as follows:
i) For T > d, interpretation of (2.1.14) leads to
P[Be] = 0 (2.1.17)
P[B)] = P(L, = &\(r <L, = + d)] (2.1.18)

P(B_] = Pl(L, sd)f\(Ln <N\~ < L, st+dl nz2 (2.1.19)

ii) and for 0 < v+ =d
P[Bo] = P[r < L; =d] = Gy(d) - Gy () (2.1.20)
P[B | = P(L_ = S ATERS L, s7+d] nzl (2.1.21)
It is interesting to observe that the z-process is continuous in the

mean. In view of (2.1.21), (2.1.20), (2.1.16),(2.1.4), (2.1.10), (1.3.47), we

can write

R (1) - R_(0) + 3 p(0) Gy(n)| = &P

and as T -~ 04, it follows that

RZ(0+) = RZ(O) (2.1.22)
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2.1.3 Discussion on special cases

i) Suppose that the stationary point process {tn} is such that, for all

t oy Tt > (2.1.23)

for some positive constant £. In other words, there exists a minimum time
spacing £ between consecutive occurrences (a case commonly encountered).

Let us consider some of the implications.,
First we observe that
Go(¢) =P[L, =] =0
and, as a result of (2.1.4), it follows
Gi(1) =B, 7= 1¢ . (2.1, 24)

Then, we notice that the summation (2.1.16) is finite and can be written

1N('r,!)
R (1) = 3HZ:)° p (n) P[Bn] (2.1.25)
where
N(r 0) = max {klks 7 +1}, k=L2,... . (2.1.26)

If, in addition d < £, it can be seen from (2.1.17), ... (2.1.20)... that

Be(0) ST

RZ(T) = - (2.1.27)

for + <d

0 ford<rt<t -d

or with a sketch
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) -4 d t-d ¢ T
Figure 2.1. Sectional Sketch of RZ( T).
Notice that
lim R (1) = Bp(0)8(7) , |7] < . (2.1.28)
d_,o Z .
We observe also that the representation (2.1.5) is valid, i.e.,
[0 0]
z(t) = 2, a plt-t) (2.1.29)
n=-o0

(p denotes a rectangular pulse of width d < ¢ and height %).

ii) Suppose that the stationary point process is such that

Ly, %, ...%, [x =L - Ln] are independent random variables and that the

n+i
Xn are identically distributed; we will assume that density functions exist
and denote

n
fn(cr) = lim Ple < D) x.

1
<¢+h]l-— je{01,...} (2130

We shall evaluate (2.1.16) under the given assumptions.

Observing that, with y > x
Pl(x<L;s x+dof My <L; <y + dy)]
=P[x<L,< x+dx] Py -x<x; =y +dy - x]

= g1{x)dx f;(y - x)dy (2.1.31)
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equations (2.1.18) and (2. 1. 21) (with n = 1) can be combined in the single result

d T+d
P[B,;] =S‘g1(X) u(T-X)‘gfl(y-x)dydx (2.1.32)
0

T

where u(t) denotes the step (or Heaviside) function
1 , t>0
u(t) = . (2.1.33)
0 , t=0

Similarly, with x < x + o <y, we can write

RBl(x < L, Sx+dx)n(cr +x<LnSo +do +xﬂ(y < Lh+1 <y +dy)]

P[x<L,£x+dx]Po <x; + xn_lscr+ds]P[y-x-cr<any+dy -x -0

gilx)dxf (o)dofy(y - x - o)dy (2.1.34)

and it follows that eqn. (2.1.19) and (2.1. 21) with n 2 2 are unified by the single

equation
E Ttd T-x |

P[B ]—S‘gl(x)g 51 (G)fl(y—x-cr)dordydx (2.1.35)

Finally, the correlation function RZ( T) can be written
d

S\gl(x) u(x - T)dx
d ++d
p(l)S‘ g1 (x) u(t - x) S‘fl(y - x)dy dx

R (7) = (0)
z

Td T-x

d
S‘gl(x)S‘S‘ (cr)fl(y -X -¢g)doedydx, T2 0. (2.1.37)

o0
DI
n=2
2.1. 4 Example

We shall assume that the {tn} constitute a Poisson point process (see

section 1. 4. 2) and that



1+q? , n=0
a =1, p(n) = (2.1.38)
1 , n=1.

Using (2.1.7), we obtain the average value of the z-process

7 = —dl—(l - e“Bd) ) (2.1.39)

As for the correlation function RZ(T), it will be interesting to give
two different calculations.

i) For T > d, equation (2.1.16) can be written

RZ(T) alip[(L1 < d)ﬂ(L{ = d)]

1 g
= 3 P{L; = d] P[L1 < d]

= é(l - e'ﬁd)2 (2.1.40)

in view of the well-known fact that the Poisson point process has no memory.
For 0 = v =d, we can write

1+¢?
42

R () = Plr < L, = d]

1 i
+ 5 PlLy = T)(\(L1 < d)]

- al—z i etye T - e e P - 7P (2.1.41)

ii) The same results can be obtained from (2.1.37). Observing that

(for a Poisson point process)

*e]
2 fle)= 2 g (o) =8 (2.1.42)
n=1 1

(this may be seen from section 1.4.2), equation (2.1.37) becomes




- 47 -

d d T+d d T+d T-x%

3
R (1) = u 3’2)3 ﬁv(x T, d)dx+97§u(-r X)S ‘3ydydx+‘3 u(T - x)S.S‘ ~Ply- 0')dtrdydx
0 0
»T20 (2.1.43)

The evaluation of these elementary integrals leads to (2.1.40) and (2.1.41). A

sketch of RZ( 1) is given below.

|
9_1-__-..-

Figure 2.2. Sketch of the céi:rélation‘ funéetion RZ(-r).
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2.2 The impulse process

2.2.1 Definition
The impulse process s(t) is the improper random process represented

as
s(t) = f} a 6(t -t ) (2.2.1)

n=-o
Using some heuristics, we will define first and second order statistics.

2.2.2 Generalized statistics

Two cases will be considered.

2.2.2.1 The case!l > 0

We assume that the point process {tn} is such that (2.1. 23) holds, i.e.,

- .2,
t o, mt, > 2>0 (2.2.2)

with probability one.
In view of (2.1. 29), we can write

s(t) = lim z(t) (2.2.3)
d—+0

First-order statistics

Assuming E[lim z(t) ] = dlir(r)1E[z(t)], equations (2.1.7), (2.1.2) lead to
d—0 -
s = E[s(t)] = aB . (2.2.4)

Second-order statistics

Similarly, from RS(-r) = BEls(t) s(t + 7)] = élr% RZ(-r) and because of (2.1.25),
(2.1.28), (2.1.18), (2.1.19), it follows that

PHL; sdfXr<L,=v+d]

R _(7) = pp(0) &(7) +p(1) hi_% -
N(, ¢ - - _
+ (25 p)(n)%ji_j[;r%) P[(Ll = d)(\(LIl :;;)r\(T<Ln+'1 < T+ + d)]
n=z

, T20 (2.2.5)
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thus determining the generalized correlation function RS(-r) in terms of the

statistics of the {Ln} process.

Discussion and example

It is important to note that

P(L; = d)f\(Lns M\~ <Ln+1 s+ +d)]= Pl(L,; Sd)ﬂ(-r<Ln_H <s++d)]

, for d<1{¢ (2.2.6)

and that
R (7) =0, 0< [r]<e . (2.2.7)

It is interesting to observe that if we assume the @ to be uncorrelated

with zero mean, this generalized correlation function becomes
RS('r) = Bp(0)8(T) (2.2.8)

which is in accordance with the common belief that one may think of white noise

as a train of uncorrelated impulses occurring randomly in time.

In order to provide an example, we shall evaluate expression (2. 2. 5)
under the following conditions: we suppose that the instants of occurrence
constitute a stationary point process with jitter, {t1'q} = {tn + En} [see section

1. 4. 7], such that

i) for alln

by Tty 2 (2.2.9)

and such that the random variable L, x;, ... X associated with the tn process
are independent with all the X identically distributed according to a density

function f, (o)

ii) the "en are pairwise independent with identical density function (o)

such that
-1 <e <O (2. 2.10)
n

with probability one.
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As in the example of section 1. 4. 7, we can write
I < "< ' s
Pl(Ly = oML = 9= <L =7 +d]
= . < < + < T o+
PO <L, +¢ d)ﬂ(Ln+ € (< L, te, ST +d]

< +e¢ < + < <
+ Pl(Ly e s AL, e < A<l Fe = rrdlWLy e =0)]

where the Lr'1 are associated with the t;l-process. However, it should be observed

that for d < £, the preceding expression [call it J] simplifies and becomes

J =P[O <L; +¢ < d)ﬂ(-r<Ln+1 te S r+d)] (2. 2.11)

,d <

Thus, for d <1¢

J=Pl0<L; +¢ sar<Ly +x + + x, * En+1s T+ d)]
00 d-u ++d-u
= ggl(u)[gf(ffl)dﬁ Sll’l(ffz)dﬁz]du (2.2.12)

0 -u T-Uu

where n(o) is the density function for x; +. .. tx €ty

Next, we may notice that by virtue of (2. 2.9), (2. 2.10) and (2. 1. 24),

equation (2. 2.12) can be written

21 d-u T+d-u
J = BS‘ [gf(crl)dcl gn(ﬁz)dﬁz]du (2. 2.13)
0 -u T-U
,d<!{

If we assume that f and n are continuous, it then follows that
24 2L o

1 1
lim —[]=§1im—[]
a0 J 9 § d-0 d?

%«This interchange of limits holds under weaker assumptions than continuity
(see Hobson).
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and using the theorem of the mean, we obtain

lim —

24
[35‘ f(-u) n{T - u)du
0

s}

B\f(-u) n(T - u)du

=00

= pp_(7) (2. 2.14)

where pn( T) denotes the density function for x; + +xrl + € - ¢ . Conse-

n+1
quently, equation (2. 2. 5) can be written

N(T,¢)
R (1) = Blp(0)&(T) + 27 p(n) pn(T)] , tz 0 . (2. 2.15)
n=1
Letting
yliw) = Ele 1] (2. 2.16)
£4ie) = Ele™¥N]
o0
¢ () = §RS(T)e-ledT (2. 2.17)
-0
and observing that
o0 o0
p:;(ico) = S‘e—lepn( T)dTr = S‘e—lwrpn(-r)d-r
-00 0

- Iytie |2 {6 G},

it may be seen by using Beppo-Levi's theorem (ref R. 2.) that if we assume
0
2 lp(n)] < (2. 2.18)
n=1

we obtain from
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0

[+ o}
¢ () = Bp(0)+2, pin) ge T, (1)dr
S n=1 n
0 0
x iwT
+27 p(n)fe p_(7)dT
n=1 § n

that

¢ () = Bp{ONL - [y(io) [2]+ Biv(iw) [* 35 p(nif (iw)
n=-co

n(
h sk
where folic) = 1

and where for n > 0

£ () = £ (-0 = £ (-1}

Illustration: Nearly-periodic point process with skips.

We have for the periodic process with skips, from (1. 4, 33),

. _ -iwT
£ (iw) = (1 q)ew
~iwT
1 -qe
and from (1. 4. 21)
_1l-g

B =
and we shall assume that

p(0) =1+¢c?

o) = o 1?1, ol <t n] =1

The evaluation of the infinite series (2. 2.19) leads to

-iwT
_1-4q 21.1-4 2 e (1-qe ™ 1n
o (o) == [L+o? ]+ == [vliw)] é\:-\—’x{pl___Tm}
© .
1 - . 1 - 1wT
+ Tq Ivtia)|2 25 [pll@e __yn
n=i 1 - qele

and

(2.2.19)

(2. 2. 20)
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o (o) =19 4s2- p WGW|* -9y, (- Mig|* 1 - W7

(L T [ 1- 2ucos wT +p?

where

M=p TQq-pq

Two limiting cases for the preceding expression should be considered:

view of the following properties of a Poisson kernel (ref W. 2.)

2 0
. 1-n 2m
lim = — 8{w - nwo)
w+l 1 - 2p cos wT + p? T :Z}
0
. 1 - u? 2m 2m
= — - 4+ — = —
HEirll l1-2pcoswl+p2 T ::’ 8w - (n )w°] ©oT T
and observing that
=1, 05q<1®p =1
H='1<-'—'>P =-1, q=0,
it follows that in a generalized function sense, we can write:
when
p=1 q<l1
then
1- . .
p (o) = =21 +o? - (1-g)| Wi *]+(1- @ |viie|? 2 Z) 8(w - nwo)
n=-oo
and when o =-1, q=0
then

Iv(m)lz+cr2]+|v(m)|z Z) 6[w (n+—)wo]

- Lp
¢S(w) = T

(2. 2. 21)

in

(2.2.22)

(2. 2. 23)

(2. 2. 24)

(2. 2. 25)

The case (2. 2. 22) with q = 0 (no skips) is well-known. The case (2. 2. 24)

with ¢ = 0 corresponds to an alternating impulse process
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stt) = 2 (-1 slt -t )

n=-co

where the t constitute a nearly-periodic point process.

2.2.2.2 The caset =0

Assumption (2.1. 3) indicates that the probability of having two or more
occurrences in a small interval is negligible; as a result, the case £ = 0 could
be considered as the limiting situation of section (2. 2. 2.1) when £ - 0. In

view of (2. 2. 4), (2. 2.5}, (2.1.26), it follows that

“s = Els(t)] = op (2. 2.27)

and .
Pl(Ly = d(r<L,= 7 +d)]

RS(T) = Bp(0)6(T) + p(1) lim

d—0 d?
0 - 3
+3 p(n) 1im L1 S A (L, = ';)D(T <Lpy S 1+ d)] (2. 2. 28)
n=: d—0
, T 0

Discussion and example

We have found it difficult to give a rigorous justification for what
precedes.

Let us evaluate (2. 2. 28) under the assumption that L, x,,... x are
independent random variables such that all the X are identically distributed
according to a continuous density function f, (¢r). It may be seen from equa-

tions (2..1.32), (2.1. 35) that (2. 2. 28) leads to

[e o}
R (1) = Blp (0)8(T) +27 p(n) fn('r)] , T2 0 (2. 2. 29)
n=1

with
£(s) = {f(s)}".
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Notice that in view of

g (9 = ero{n (s}

Z} —5—, Re(s) > 0

we have o
1 -1(s)

gils) = p=—

thus identifying fn( T) as the derivative of the distribution function Fn( T)
which appears in equations (1. 3. 36), (1. 3. 37). Also, we should note that if

the point process {tn} satisfies

E[N(7)?] < (2.

it then follows from (1. 3. 74) that

0 00
2 i (] < p(O T £ (1) <0 ae. (2.
n=1 n=1 :

If we assume on the other hand that condition (2. 2.18) holds, we obtain

¢ () -ﬁE p(n)f (i) (2.
n=-oo
where fali) =1

£ (i) = £ (-ie) = {£;(-ia)}"

Jllustration: Poisson point process

We consider various choices for the p(n):
i) if we take

[o0] o0
*We recall that from theorem 4, ) Gn( 7) = Br and ) gn(x) =B a.e.
n=1 n=i

(2.

2. 30)

2. 31)

2.32)

2. 33)
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a=1 p(0) =1+g?

oln) =1 (n= 1) (2. 2. 34)
we obtain from (2. 2. 27) that
S =8
and from (2.1. 42) and (2. 2. 29)
R_(7) = 0 +a?)8(7) + pl (2. 2. 35)
p (o) = Bl + o) + 2mpt8(w) - (2.2.36)
ii) if
n
a=0, p(n) =(-1) (2. 2.37)
we have —
s =0 (2. 2. 38)
and
-2
R_(r) = B5(n) - ple P (2. 2. 39)
, T 20
W2
p (o) =B o T ap? : (2. 2.40)
It is interesting to observe that the case (2. 2.37) occurs when we have an
alternating impulse process described as
S n
s(t) = 20 (-1 6(t -t ) (2. 2. 41)
n=-ow
where the {t } constitute a Poisson point process.
n
iii) if we choose
n
p(n)=p| I, lp| <1 (2. 2. 42)

it follows that condition (2. 2.18) is satisfied and consequently from
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(2..2.33), we obtain

w? + p3(1 - p?)

A T Py

2.3 Applications to secondary process

Let us consider a secondary process

0

yi) = 20 e mtt)

n=-ow

which we write
o0

y(t) = S:](t,G)S(U)dG
~-00
where

[o 0]
s(t) = 2, a 8(t -t )

n=-o00

(2. 2. 43)

(2.3.1)

(2.3.2)

(2.3.3)

and {tn} is a stationary point process. In other words, we are viewing a

secondary process y(t) as the output of a linear time-varying system (acting

as a shaping filter) having as an input the impulse process s(t).

Let us assume that equation (2. 3. 2) may be handled as if s(t) is a

perfectly ''good' process. Under such conditions, we obtain from (2. 2. 27)}

[0 ]
E[y(t)] = op gn(t, o)do

~00
o0 0

Ely(y(t + 91 = (a0 it + mo2)R (o1 -oa)d0 0z

-0 -0

(2. 3. 4)

(2.3.5)

assuming convergence of these integrals [RS is defined by equation (2. 2. 5)

or (2. 2. 28)].
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It is interesting to consider the case when y(t) is a stationary

secondary process, i.e.;

0
yity = 25 anmlt-t) . (2. 3. 6)
n=-o
Here, equations (2. 3. 4), (2. 3. 5) lead to
[¢ o]
7 = Ely(t)] = aB \n(o)do (2.3.7)
-0 ‘

Ry('r) = E[y(t + n)y(t)]
0 o0

= S‘ ‘S‘n(o'ﬂn(o'z)RS('r-Fo'l -0y ) doy dop (2. 3.8)

-00 =0

There are cases where the classical Parseval relation (in L,) can be extended
to hold in a more generalized Fourier theory (ref L. 4.). Under such condi-

tions, equation (2. 3. 8) would lead to the familiar relation

p.(e) = In"lie) [Pp (@) . (2.3.9)

where n*(iw) is the Fourier transform of n(t), thus giving the spectral density
associated with y(t) in terms of the generalized Fourier transforms of n(t) and
Rs(t).

Examples

1) The coin-tossing process

This process is well-known (see for instance ref L. 1, page

128,...). It is defined as

y(t) = a, tn<t5tn+l 3 (2. 3.10)

whenre {tn} is a periodic point process with period one, and the a, are
independent random variables taking on the values zero or one with respective

probabilities q and 1 - q.
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It is interesting to observe that y(t) can be interpreted as a secondary

process in two equivalent ways:

o0

y(t) =20 anlt-t)

n=-00
or
[>¢]
yit) =27 mlt-t)

n=-o
where 1 is a rectangular pulse of unit height and unit width and where {t;l}
constitutes a periodic point process with skips. Equations (2. 3.13),(2.3.7)
(2.3.9),(2.2.23 witho? =0 and y(iw) = 1) lead to

E[y(t)] =1 - g (2. 3.14)
L2 W
g (e = all - @ = 5F- + 2n(l - 9)F5(w) (2.3.15)
(z)

or
-q(l - g+ +(1-q, 0s|r]s1

R (n) = (2.3.16)
(1-q? . rl> 1

2) The random telegraph wave

This process is usually defined as

_ B <
) = (-7, ¢ <tst

where the set {tn} constitutes a Poisson point process. y(t) could be

considered as the output of an integrator with input

0

s(t) = 2, 2 (-1)"s(t - t).

n=-oo
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Using (2. 3.7), (2.3.9), (2.2.37), (2.2.40) and in view of

s 1
In*(iw) |* = =z
we obtain
Efy(th} =0
_ 4p
A
or

R (7) = e_zﬁlTl
y

which are well-known results.

3) Poisson emission of pulses

We consider
(o 0]

yit) = 25 @ nlt,t ) (2.3.17)

n==-o00

where {tn} is a Poisson point process and where the @ are assumed to

satisfy (2. 2. 34)

Using (2. 3.4), (2. 3. 5), (2. 2. 35), we obtain immediately

o0
Ely(t)] = ﬁS‘n(t, o)do (2.3.18)
=00
o0
Ely(t)y(t + 1] = Bl + %) \nlt, o)n(t + 7, ¢)do
-0
+ E[y(t) JE[y(t + 1] (2.3.19)

results which agree with ref L. 1., pages 149, 15].

In particular, if y(t) is a stationary secondary process, we obtain

o0

v = Ely(t)] = g\nle)de (2. 3.20)

~00
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and
¢y(w) = B(l + 0¥ " (iw) [* + 2ry? 8(w) (2.3.2])

The preceding equations are useful for studying the current y(t) at
the anode in a pentode; if n(t - o) denotes the current pulse produced at the
anode by an electron emitted from the cathode at the instant ¢ and if q is the

probability of interception by the grid , we can write

t st
n.
y(t) = T it -t) (2.3.22)

n=-ow

where {t1'r1} is a Poisson point process with skips. Knowing that {t;l} is a
Poisson point process with parameter B(l - q), it follows from (2. 3. 21),

(2. 3. 22) that

o0
y=a- q)ﬁS‘n(U)dcr (2. 3. 23)
0

¢y(w) = Bl - q) |n™(iw) | %+ 27y%8(w) . (2. 3. 24)

For a diode, we take q = 0 and in this case the preceding equations bear the

name of Campbell's theorem.

Illustrations

i) The infinite "Poisson'' cardinal series

We define this process-as

0 . Wo
vy = 3 sing (-t (2. 3. 25)

n=-oo wo
> (t tn)

where {tn} is a Poisson process.
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From equations (2. 3. 20), (2.3.21, ¢ = 0) and in view of

2
T , 02 |a] s%
ln*(iw) |2 =
0 , el >i°?:9
, T = ar (2. 3.26)
wo
we obtain
Ef[y(t)] = BT (2. 3. 27)
sin bl I
22 2
R (1) = p*T® + BT ——-—o (2. 3.28)
y W
7 T

ii) The semi-infinite ""Poisson'’ cardinal series

This process will be defined as

<
tn_t sin i; (t - tn)
yt) = 25 . (2.3.29)
n=-o ] (t-t)
2 n
Since
sin—‘%ﬂt
,t>0
o
> t
n(t) = ﬂ (2. 3.30)
0 ,t=<0
-
or
\ 4 W,
Ky - 2 - 7 _Yo 12
|n* (i) | > | Arctg ST | , (2.3.31)

we obtain this time

E[y(t)] = 3 BT (2.3.32)
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ZTZ 4 .
. (w) = 2r BL 6w +p 5 |arctg 522 |2

4 ()
% sin (ﬂcr) s1n—w3(l'r| + o)
R(n=teriep 3 —2 2 do
y Wo o [r] +0)
, T: _Z_TT
wo

and observe that

R_(0) = E[y(t)?] = $p*T% + 3BT .

iii) The infinite train of rectangular pulses

We consider

0

yit) = 20 enm(t-t)

n=-o0

(2. 3.33)

(2.3.34)

(2.3.35)

where the @ satisfy (2. 2. 34) and where n(t) is a rectangular pulse of width

d and height -;— .  Therefore

22 wd
sin 7
>:< 5 z =
[n#(io) | g
2
As a result, we obtain
Ely(t)] = 8
sin? %
¢ (@) = 2mwp%8(w) + Pl +o?)
y (ﬂ)z
2

and
.

-

R (") = {

;,Bz, , T > d

p (1+a%) ]| +[32+§-(1+0'2) , 0s ||l =d

(2.3.36)

(2.3.37)

(2. 3.38)

(2.3.39)

It is interesting to compare these results with equation (2. 1. 39), (2.1. 40),
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(2.1. 41). [See also Fig. 2.3.]

2. 4 Applications to random sampling

2. 4.1 Introduction

The problem of linear interpolation is well-known and has been briefly
defined in the summary for this chapter. However, in this definition, we did
not take into account the errors introduced by the sampling mechanism: errors
in amplitude and errors in timing (assuming zero-width sampling). As a re-
sult, the problem defined by equation (2.0.3) will be simply restated in terms

of
o0

x(t) = 37 (1+a)x(t +e )h(t-t), (2.4.1)
ne Romom T n

where €, denotes the time-jitter error and a represents a scaling error in

amplitude. Equation (2.4.1) can be written

V2
x(t) = gh(t - o)y(o)de (2.4.2)
-00
where
y(t) = x(t) s(t) (2.4.3)
with
0
s(t) = 25 (1 + a ) 8(t -t ) (2.4.4)
n=-o00
x, (1) = x[t + e(t)] (2.4.5)
and
e(t ) = e, . (2.4,6)

Our aim is to find the interpolation function h(t) which will allow the
"best'' recovery of x(t) [;(\t) is often called the best estimate of x(t)]. By
choosing as index of performance the minimum mean-square error criterion,
we shall solve this problem by employing a heuristic extension of Wiener's

filtering theory.
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N

g+ B+ o?)

Figure 2. 3. Correlation function for the infinite train of
rectangular pulses.
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2.4.2 Brief review on Wiener's theory for filtering.

The concept of this theory is familiar and we shall briefly summarize
some classical results by considering a simplified case (for the details on

the theory, we refer to W.3, B.7, D.4, L.1).

Assuming that

Rx(-r) = B[x(t + 1) x(t)] (2.4.7)
Ry(f) = E[y(t + 1) y(t)] (2.4.8)
ny('r) = F[x(t + 7) y(t)] (2.4.9)

are continuous functions and that each has a Fourier transform [respectively

¢X(w), q)y(w), ¢Xy(w)], we want to find the function h(t) such as to minimize

/\
e? = B[|x(t) - x(t) |*] (2. 4.10)
where 00
N\
x(t) = S‘h(t - o) y(o)do (2. 4.11)
-0

This problem leads to

i) A non-realizable solution h(t) obtained from

o (w)

H(w) ¢y(‘*’) (2. 4.12)

where H(w) denotes the Fourier transform of h(t) [possibly in an extended sense].

ii) A realizable solution h(t) given by the Wiener-Hopf integral equation

[>e]

R (7) = yh(d) R (T -0o)do , T= 0; (2. 4.13)
Xy : y

using complex variables techniques, it can be shown that if

X Log¢ (w)
5 T de - (2. 4.14)

-0
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2
(We may note that gby(w) = e ® violates condition (2. 4.14).)

then ~ > ¢ (u)
1 e .
B ¢ 3755 S'e ot y e e aul at (2. 4.15)
1 ; EA 2
where
Gz(u +1iv) = eMu+iV) = P(u, v) + iQ(u,v) (2. 4.16)
Gy(u + iv) = P(u, -v) - iQu, -v) (2. 4.17)
with

; s Log ¢ (s)
)\(Z) = T S. '—zz—_—szz— ds M (Z. 4, 18)
0

G; (or G;) is the solution* of the so-called factorization problem

¢y(w) = Ga(w) Gj{w) = G2{(w) Ga(w), for all real w ; (2. 4.19)

here, not only G;(u + iv) is analytic and bounded in the upper half plane, but

also ——1———— is analytic in the upper half plane; similar properties hold
Gz(u + iv)

for Gy(u + iv) in the lower half plane [there are situations, e. g., the rational

case, where G; and G, may be simply found by inspection of the zeros and

poles of ¢y(w) ].

In any case, the minimum mean-square error is given as

o0
e? :2—1—7 §[¢X(w) - lH(w)lngy(w)]dw . (2. 4. 20)
-0

It is clear that the preceding filtering problem resembles our interpo-

lation problem, except for the fact that the process y(t) of equation (2. 4. 2) is

*G, is a.e. unique up to a complex constant of modulus unity.
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an improper random process. However, there are cases where the general-
ized function Ry( ) * exists** and has a generalized Fourierff‘-ansform ¢y(w)
which is non-negative; furthermore, under some conditions , the classical
Parseval relation (inL,) may be extended to hold in a generalized Fourier
theory. In view of these facts, we shall heuristically extend the preceding

results and give some examples.

2. 4.3 Optimum interpolation

Let us consider equations (2. 4. 2),... and, for simplicity, assume that:

1) x(t) is weakly stationary, continuous in the mean and has a spectral

density ¢X(w).

ii) the "'time-jitter process' e(t) is such that, for u # v, e(u) and e(v)
are independent random variables identically distributed with characteristic
function

-iwe(u)]

C(iw) = Efe (2. 4. 21)

iii) The processes {tn} , {an} , e(t), x(t) are mutually independent

and
E[an] =0
0’2 , n=m
E[anam] = (2. 4.22)
0 , n¥m
Denoting
R_ (1) = E[x,(t + 7) x,(t)] (2. 4. 23)
1
RXXI(T) = Blx(t + 7) x,(t) ] (2. 4. 24)
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we obtain |
Ry(-r) = Rx,(T)Rs(T) (2. 4.25)
ny( T) = Rxxl(-r) g . (2. 4. 26)
Furthermore, from
R_ (1) = E{R_[r +elt + 1) - e(t)]} (2. 4. 27)
Xy X
and in view of ©
1 iur
Rx(-r) 5 S\ ¢X(u) e du (2. 4. 28)
we can write "
[o e}
_ 1
RXI(O) =R (0) = 5= ysbx(u)du (2. 4. 29)
-00

[0 0]
R (1) =5 qux(u)lcuu)lzei“ du
=00

, T#0 (2. 4.30)

[Observe that, in general, x,(t) is not continuous in the mean. ]

Let 0
r(r) = 311; §¢X(U)lc(iu) Fe'™ au (2. 4. 31)
~00
and
e o]
a? = R, (0) - r(0) =2—1ﬁ §¢X(u)[1- |Ctiu)|* 1du . (2. 4.32)
-0

Then in view of the delta-function which appears in (2. 2. 28), equation (2. 4. 25)
can be written

Ry(f) = B(1+o?)a? 8(T) +r(7) R_() (2. 4. 33)

or by using generalized Fourier transforms

(e e]
¢y(w) = B(l+o?)a? +E]:T-r §¢x(u)]C(iu)|z¢s(w-u)du . (2. 4. 34)

=00



Similarly, we obtain

o0
ny( ) =B —2}1? S‘¢X(u)C(iu)eluT du (2. 4.35)
-0
or
¢xy(w) = Bsbx(w)c(iw) . (2. 4. 36)

Next, we shall illustrate with some examples.

2.4.3.1 Nearly-periodic sampling with skips, time-jitter and amplitude errors

Referring to (2. 2. 23), the preceding equations give

8 (v - (L9 )2 E ¢ (w-nw)| y(inw)C(iw - inwo) [

n=-o

L1 :rq(l +¢)R_(0) - (1 q) S'¢ ()] Climylio - i) au

=00
2
, W = % (2. 4.37)
and
l1-gq .
¢Xy(w) = — ¢ ()Cla) . (2. 4. 38)

It is perhaps interesting to observe that in view of

s
Z} S‘gb (w - nwe) dw —S‘¢> (wydw <eo
n=-0

2

it follows from Beppo-Levi's theorem that
¢ (0) < o a.e.
y

and that furthermore ¢ (w) is locall% summable. Also notice that for those

values of w where the summatlon > ¢ (w - nwe) vanishes, ¢ (w) must also
n=-c
vanish.
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Case I: Non-realizable interpolator

From (2. 4.12), we obtain

Hle) - T = ¢ (W) Cliw)
1-4 2, ¢_(w-nwe|y(inwe) Cliw - inwy) [*
n=-o0 X
(1+c*)TR (0) . o
+ -4 "5 5 g(u)IC(iu)y(im-iu)lzdu (2. 4. 40)
=00

If we assume that the sampled process x(t) is band-limited such that

p (0 =0, o z—“; (2. 4. 41)

the preceding expression leads to

¢ (w)Cliw)
H(w) = 1'_I‘q X - (2. 4. 42)
? () |Cliw) |2 e (1+c? R_(0)
Lo
2
X y ¢ (u) |Ciu) y(iew - iu) [ du
2w X
ﬂ
)
with an associated mean-square error
o Lo
2 2
1 H 1- . Npa .
€t = 5 §C(§Z; (1 +02)RX(O) ———T—Tg ¢X(u)|C(1u)y(1w— 1u)|zdu dw (2. 4. 43)
] - %
2 2

By letting q = 0 (no skips), o2 = 0 (no errors in amplitude), the preceding re-

sults agree with those in references B. 2 and B. 9.

Let us apply (2. 4. 42) to a specific example: assume that the sampled

process x(t) is wide-sense Markov, i.e.,
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b

R-X('r) = e a> o0

and that
q=0, Clic) =1, y(iw) =1, ¢ =0

(2. 4. 44)

(2. 4. 45)

(in other words, we have an ideal periodic sampling). In this case, we have

¢ (w)
H(w) = T x

)
E ¢y{w - nwo)

n=-o

and in view of (Poisson summation, ref L. 4., page 70)

e ad -inwT
E ¢X(w -hwy) =T E RX(nT) e €
n=-o Nn=-c
we obtain
H(q) = 2a 1 - 2737 cos wT + e_ZaT
@ —2aT al + w?
1 -e
Then the interpolation function is
ealt ,0< |t] =T
h(t) = ;
0 , otherwise

it is clear that the interpolation function uses only two samples:

(2. 4. 46)

(2. 4. 47)

(2. 4. 49)

the most

recent ones from the right and from the left [this result is not too surprising

in view of the Markovian property of x(t)].

Case II: Realizable interpolator

Let us suppose that

R (1) = e-al'rl , a>ao0
X

and that
Cliw) =1, ¢% =0, vy(iw) =1

(2. 4. 50)

(2. 4. 51)
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(periodic sampling with skips). In view of
_ 2a
Pl T

and using (2. 4. 47), (2. 4. 37), (2. 4. 38), we obtain

1-q 1 - 2qe'aTcos wT + e'?‘aT(Zq-l)

¢ (w) = . -
vy T {1 - e-aTelTw)(l . e—aTe-le)

_1l-q¢q 2a
¢xy(w) T al +F

It may be seen that ¢y(w) can be expressed as

-iTw iT
¢(w):1-qaz 1-pe 1 - e ©
y T ) -aT -iTw -aT iTw
I-e e l1-e e

where p is taken to be the smaller root of

- b
“+l _ eaT_I_e aT(.Zq—l)
M q
and where
-2aT
o? l+e (29 - 1)
1+ p
With

-iwT ek

(2. 4. 52)

(2. 4. 53)

(2. 4. 54)

(2.4.55)

(2.4.56)

(2.4.57)

(2.4.58

* This equation has two real positive roots p; and p; such that y; u, = 1.

% Observe that G, / L, as in the classical theory.
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we obtain from (2. 4. 15)

o]

. 0 . .
2 l- e-aTe-cho ST 1 1- e—aTelTu e1‘cu

H{<) a’ iTu u? +a?

du}dt
-0 1 - pe a

1 - }J.e-iTw

an expression which can be evaluated by residue techniques. The term { }

gives
1 1- e_ZaT e-at
2a | -aT
1- pe
and consequently
-2aT -aT -iTw
1-e l-e e 1
H(w) = . . (2. 4. 59)
«2(1 - ue aT) a+ iw 1- e i0T
or as an interpolation function
1 - e 22T 2 n
h(t) = —F 2k k(t+nT) (2. 4. 60)
at(l-pe ~ ) n=o
where
e-at
, 0<t=T
k(t) = (2. 4. 61)
0 , otherwise

the associated minimum mean-square error is calculated from (2. 4. 20) and

we find

)2
e =1 - (2. 4. 62)

In the absence of skips, the preceding results become (u = 0)
1 - e-aTe-iTw

a+iw

H(w) = (2. 4. 63)




g at , 0<t=T
h(t) = (2. 4. 64)
0 , otherwise
1 e-ZaT
2 -y 2=
€ 1 5o . (2. 4. 65)

In concluding, it is interesting to note that

i) in the absence of skips, the interpolation functions uses only one

sample (the most recent one)

ii) in the presence of skips, the interpolation function uses the whole

infinite set of past data (the Markovian structure of x(t) has been lost).

2.4.3.2 Poisson sampling with time-jitter and amplitude errors

Referring to (2. 2. 36), (2.4.34), (2.4.36), we obtain
¢y(w) = Bl + )R (0) + p* g (o) |Clin) |2 (2. 4. 66)

¢Xy(<-») = B f@Cliw) (2. 4. 67)

Case I: Non-realizable interpolator

In view of (2. 4.12), we have

¢ (wC(iw)
H(w) = ~ X (2. 4. 68)

6] vq2  1+a?
¢X(w)|0(w)l t 5 R _(0)

and, as minimum mean-square error, we find

(1 +a®)R (0)
X

¢ = - S‘ c}(lij de . (2. 4. 69)

-0
In order to illustrate, suppose that

_-alr]

W

RX('r) ,a>0

(2. 4.70)

i
&
q
™~
i
(@]

Cliw)
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(absence of time-jitter and amplitude errors); the preceding equations lead to

and

where

Case II:

H(w) = s (2. 4. 71)
h(t) = % bl (2. 4.72)
& = % (2. 4.73)

’\; 2 2ap (2. 4.74)

Realizable interpolation

We make the same assumptions as in (2. 4. 70); it follows from (2. 4. 66),

(2. 4. 67) that

where

With

equation (2. 4. 15) gives

0
. itu
_ w - la ~iwt 1 el
Hlw) =22 5 ‘Se t2) arwn-w
-00

and because of

2 2
o) - p o ::z (2. 4.75)
(w) =B 73 g +w2 (2. 4.76)
b=+ Naz + 2ap (2. 4.77)
_ w - ib
Gy (o) = \]E w-ia ’

o0

du}dt
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we obtain
_ 2a 1
H(w) TS b g (2. 4.78)
2a -bt
a+b e , t> 0
h(t) = (2. 4.79)
o ,t 0
with minimum mean-square error
2ap
2 _q _ _&@p )
€ 1 @ + b (2. 4. 80)

It is interesting to notice that the optimum interpolator is a simple first-order

system.



CHAPTER III
Step-wise Processes

Summary

The random telegraph wave and the output of a zero-order hold in a
sampled-data control system constitute familiar examples of step-wise pro-
cesses.

In this chapter, we shall define various models of stationary step-wise
processes and we shall investigate their second-order statistics. Time-domain

and frequency domain statistics will be considered, with their respective merits.

The results obtained are particularly simple in the case of independent

sampling intervals. For illustration, various examples are given.

3.1 The chopped random process

3.1.1 Definition
The chopped random process y(t) is a continuous parameter random

process defined as

ylt) = x(t), t <tst (3.1.1)

n+l

where x(t) is a continuous parameter stationary random process which is

independent of the stationary point process {tn}°

Following this definition, y(t) is a stationary random process. This
process can be viewed as the output of a zero-order hold, preceded by a
sampler which samples (or 'chops') the process x(t), at the random instants
t .

n

For simplicity, we shall assume that the process x(t) is continuous in

the mean and has a spectral density denoted by gbx(w). As for the point process

{tn}, we shall suppose that equation (1.3.31) is satisfied, that is

- 78 -




- 79 -

als
-«

E[N(7)] < w (3.1. 2)

3.1. 2 Seéond-order statistics

First, we observe that

Ely(t)] = E[x(t)] (3.1. 3)
and _

E[y(t)*] = R_(0) (3. 1. 4)
where

Rx(t) = E[x(t + 1) x(t)] .

Denoting by t_1 the instant of the most recent occurrence prior;to the

fixed instant t and using the notations of Chapter I, we can write

Elx(t + 7)y(t)] = E[x(t + 7) x(t-)]

1t

E[R (7 + L_l)]

that is )

ny('r) = gRX(T + ) gi(o)de (3.1. 5)
0

where g, (o) denotes the density function for L__1 (or for L,). Using Parseval's
relation, equation (3.1. 5) can also be written
i(.o'rd

0
1 k). .
ny('r) = ‘Z—Tf-i ¢X(w) gl(-lw)e w (3.1.6)

so that
<ny(w) = g, (-iw) ¢>-n(w) (3.1.7)

thus giving the cross-spectral density between x(t) and y(t). In an analogous

way, we obtain

*This somewhat restrictive assumption is convenient: by virtue of theorem 4,

o0 .
it follows that 2, p(n, 1) =1, Gy(0,) = 0, gi(c) € Ly(0,0) L0, c),...etc...
n=o
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Ryx(*) = Ely(t + 1) x(t)]
[+ o]
=§RX(T - o) gi(o)do (3.1. 8)
0
and
pole) = gliwp, () (3.1.9)

Next, let us evaluate the «¢correlation function

R(m) = E[y(t) y(t - 7] (3.1.10)

where without loss of generality, we assume the argument Tt positive. Denoting

by t'_1 the instant of the most recent occurrence prior to the instant t - r, we

can write
R () = Elx(t_) x(t_)]
=E[R(t_ -t )]
o0
= S‘RX(U)dF(O—, T) (3.1.11)
0~
where

Flo, 1) = P[t_l - t'_l <¢g].

This distribution function is determined as follows: letting

Ylo.m =PIt -t =o(L_ =] (3:1.12)
byle, ) = PUL_ - oL s\ >0 6.1
and observing that
Plt_ -t SU)NL_I >7)] = p(0, 7) (3.1.14)
o0
Yo, 1) = 25 b (o, 7) (3.1.15)
n-=i

we then obtain
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[o o}
F(o, 1) =p(0, 1) + 3] q;n(tr, T, (3.1.16)
n-=1

thus defining F(o, 7) in terms of the statistics of the point process. It is

interesting to notice from (3.1.12), that

Ulo, 7) = min Gi(o)
G1(T)

thus showing that {(s, 7) is continuous at the origin [c = 7=0]

The correlation function for the process y(t) is expressed as
o0

Ry(f) = p(0, T) RX(O) + S‘Rx(cr) dus(e, T) , >0 (3.1.17)
0

where

0
Ylo, T Z} P[L_, -L_ sof\(L__=nl\L

1) > 1] (3.1.18)

-(n+1)

we may observe that
[R (7) -p(0, Y R (0)] = R (0)Gy ()

hence
Ry(0+) =R_(0) = E[y(t)?],

and so y(t) is continuous in the mean.

3.1. 3 Some properties of Y(o, T)

i) Denoting

o, T) = g%J-—ﬂ a. e. (3.1.19)
dy (o, )
LlJ;l(v, T) = ——g(r——— a. e. (3.1. 20)

it follows from (3.1.15) and from Fubini's derivation theorem (ref R. 2) that

)
' o, 7) = Z 4}1,'1(0', T) a. e. . (3.1. 2))

n=i

If the Lpr'l(c, T) are absolutely continuous in every closed interval, then the
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same property holds " for Ylo, 7).
ii) If the point process {tn} satisfies assumption (2. 1. 23), namely

tn+-1 “tn>l> 0 (3.1. 22)

then the summation (3.1.15) is finite and we can write

N(o,T)
o, 1= 20 b (o, 1) (3.1. 23)
n=1 B
where _‘2; + 1
N(o, 1) = max Jklk Lmin
T+
{
, k=1,2,... (3.1. 24)

iil) Suppose that the point process is such that for some finite positive

constant L and for all n

t -t <L< (3.1. 25)
n+i n

with probability one [in other words, the time spacing between consecutive

occurrences can not exceed L]. In this case, we may notice that

o, 1) =1, for+> 1, ¢ > v+ L

(3.1, 26)
blo, 1) = Gy(7), for r< L, ¢ > 7+ L
iv) An interesting case is provided by assuming that L-1’ X_peeX_
[x =L - L. ] are independent random variables such that all the x
-n -(n+1) -n -n
are identically distributed according to density functions and denote
- 1
fn(c) =rlli—»n(} Ple <2 x_ S0+t h] - = (3.1.27)

k=1

In this case, the Lpn((r, 1) are absolutely continuous and the Lpr'l(cr, T) can

*This may be seen by combining Beppo-Levi's and Fubini's derivation theorem.
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- can be evaluated as follows: from the elementary probability

Ple<L_ -L_ = cr+c1cr)f\(x<L_l .<.x+dx)r\(L_z> )]

= f)(0)de g, (x)dxUle - + + x)

we obtain

q’;(“’ ™) = fi (o) S‘gx(X) Ule - 7 +x)dx .
0

Similarly, from
< -L s <
Pllo<L_ - L So+dNx<L_ = x+dxN

(v+x<L__=v+dv+xl\L__ = alL sy > ]

n-1

Pt(x < L_IS x + dx)(\(v < E X 1 S v+ dv)(\

n

(0 - v <x_n <¢g +do - v)(\(L_n < -r)r\(L_(n_H) > 7]

g (x) dx fn_l(v)dvfl(tr -vido U{+ -x-v) Uleg - 7 +x)

we arrive at

T-X

LJ,J'(O' T) = ggl(x) Ule - v+ x) \f; (o v)f (V)dvdx
0

, nz 2.

By virtue of (3.1. 21), we write

y'(o, 1) = £y (o) S\gl(X)U(O‘ - 7+ x)dx
T T-X

&
* 2
n:

2

*U denotes the step-function defined by (2. 1. 33).

ggl(x)U(U'T+X)§f1(U v)f l(v)dvdx a. e.
°

(3. 1. 28)

(3.1. 29)

(3. 1. 30)
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and

Ylo, 1) = S‘LLJ'()Q T)dx (3.1. 31)
0

3.1. 4 Examples

3.1. 4.1 Periodic sampling

This case is familiar (ref R.1) and the statistics of y(t) are usually
approached in the frequency domain (spectral density, etc.). As will be seen,

a time domain approach leads to simple results.

Time-domain statistics

The periodic point process is symmetric and has been defined in
section 1. 4.1. In the present case, the function y(c, 7) is not absolutely con-
tinuous and we find

T-nT
T

(n+1)T - T [

Flo, 1) = ~ Ulo=nT] + Ule -(n+1)T] (3.1.32)

where
n = max {kjk= %} , k=0,1,2,..

From equations (3.1. 5), (3.1.8) and (3.1.11), we obtain

T

ny('r) = ,1_, R ('r+cr)d0' (3.1. 33)
T

R (1) = =

yx’r _T§R(T-U (3.1. 34)
0

(n+1)T-~ T-nT
Ry('l') B — Rx[nT]"’ T Rx[(n +1)T]
 nT<ts(n+])T (3.1. 35)

This last expression leads to a simple graphical construction of Ry( T)

[see Fig. 3.1].
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Figure 3. 1.

Graphical construction of Ry( 7).

y
R
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Frequency domain statistics

From equations (3.1.7) and (3.1. 9), we obtain

1 ein_ 1
¢Xy(w) ) T  ie ¢x(w)
-iwT
1 1-e€
Pl =T TR

As for the spectral density ¢>y(w), it is obtained as follows: letting

[o 0]
sk -st
=\ t dt
Ry( s) tS Ry( e

and using (3. 1. 35), we have

© (n+t) T
e _ (n+1)T -t t-nT -st
Ry(s) —n§ g{ _T—Rx[nT]' T Rx[(n+1)T]}e dt
nT

T
o0
-snT T-1 t -st
= 'R +— R +
e og{ "t R [nT]+L R [m+nTlhe Sat

a result which is expected (ref R. 1).

-sT sT, oo
1 1 , -sT (e™® -n1-e"7) -sn
==R (0) +— - 0
st( ) Tsz(e 1)Rx( )+ Ts? nZ:le(nT)e
Since "
¢ (o) = R (iw) + R"(-iw)
Yy y
we obtain
sin? ek o0
2 inwT
(@) = ————T R (nT
¢y (&)I)Z HZEOO ( )
2
or in view of equation (2. 4. 47)
sin? ¢T
() 2 Sy )
W = -n
LANTEr

(3.1. 36)

(3.1.37)

T

(3.1.38)

(3.1.39)
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I1lustration: If we take
R{(T) =e ,a>0»0

X

that is
¢x(w) T oAl f ot

the preceding results lead to

1- e-aT -a
T e o7 , T2 0
R (m) - Z_eaT_ -av ~aT L T<+<0
Xy aT
eaT -1 ea'r s, TS -T
aT
+ - - - -a(n+ < T=
R (1) - (n+1)T -7 o an’_I‘+ T-nT o ant) T , nT=+=(n+1)T
y T T
and .
(@) _ 1 ele-l. 2a
¢>xy T iw at + w?
.2 wT
sin® — -2aT
6 () = 2 T(1 - e )
(“’—;'[‘)2 1- Ze-aT cos wT + e-ZaT

3.1. 4. 2 Poisson sampling time-domain statistics

From equation (3.1. 5), (3.1. 8) we obtain the cross-correlation functions

(3. 1. 40)

o0
ny(f) = 5§RX(T +g)e'ﬁ"dc
0

[ o]
Ryx(-r) = png(T -o)e P e (3. 1. 41)
0

In order to determine R _(7), we need first to evaluate y(o, 1) or b'(o, T) *

*Here, |y is absolutely continuous.
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and we shall indicate two ways of calculation:

i) Letting
L' =t-1-t
-1 -1

and observing that

Plx<L_ =x+da\c <t -t So+do]

¥
x+dx)r\‘(cr +x-~'r<L_l Sg +de +x - 7))

A

Pl{x < L,

11

1A

Plk< L_ x+c1x]P[cr+x-T<L'_1 <g +dr +x - 7]

sk

11

g1(x)dx gy(o - 7 + xX)do
we obtain from (3.1.12)

T
o, 7) = S g1(x) g1(c ~ v+ x)dx
0

.
We,T) = pre o= S‘e-zﬁxU(c - r+x)dx
]

that is
% ﬁe-ﬁ1(eﬂc- e
Yo 7) = (3.1. 42)
_p-r)

-Ba, ,0sg <

1pe PP - e o> T

ii) The same result is obtained by evaluation of the infinite series

defined by equation (3.1. 30). The function i'(o,v) is sketched in Fig. 3. 2.

From equation (3.1.17), we now obtain the auto-correlation function for

y(t) as -
R (1) = e PR _(0) +ipe P S‘R (o) ePT- e P 4o
y X ; X
v ipePT e P SRX(o)e'Bde , 120 (3.1. 43)
T

*The Poisson point process has no memory; I_,_1 and L' are independent and
identically distributed. -
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(o, 7)

Figure 3. 2. The function §'(s, 7), for a Poisson point process.
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Frequency-domain statistics

Using equations (3.1.7) and (3.1. 9), we have

¢_(w)

Xy B -iw "x

5, () = P 5 (0

yX B+ iw

The spectral density ¢y(w) can be evaluated from (3. 1. 43); letting
0

R;:(s) =OS\e_STRy(T)dT) Re(s) > 0

we find that

RX(O) g2 . B2 ”
R§(S) TS T B i Bé- st R.(s) - [32—:_SZ_RX(B)°
consequently
2
p (e = Bz—f;;[sbx(w) te ()]
where

o0
¢n(w) = ZS‘e-BT[RX(O) - RX(-r)]d~r= const. = 0
0

(3. 1. 44)

(3.1. 45)

(3.1. 46)

(3.1.47)

(3. 1. 48)

In other words, the spectral density is the same as the one obtained at the

B
p+s

output of a first-order system, with transfer function

, with input

x(t) + n(t), where n(t) is a white-noise with spectral density ¢n(w) and zero-

mean, and x(t) and n{t) are uncorrelated.

Illustration: Taking

R(n=e2T 250
X
we obtain for B # a B -aT >0
a+p* » T e
ny('l')=
B ﬁ-r [3 B‘T aT <
a+[3e +a-5[e et ), r=0




and for B = a

%e-aT , 72 0
R (7=
Xy %eaT - are’” , T=0
Ry('r) = e-alTl + % aITIe-alTI

In the frequency domain, we obtain

- B 2a
¢Xy(w) C B -iw a? +w?
and
R 2a 2a
W cgralase THep)

3.1. 5 Frequency analysis

3.1. 5.1 The spectral density

For simplicity, let us assume that the Lpn(o-,-r)‘ are absolutely continuous

on [0, od): it follows from (3.1.17) and (3.1.19) that

o0
Ry(‘r) = p(0, 1) RX(O) + SRX(G) L' (e, TVde , T2 0 . (3.1. 49)
0

* Otherwise, a Fourier-Stieltjes theory would be necessary; however, if the
Yplo; 7) have no singular component (which arises from the Lebesgue decompo-
sition of a monotone function) and if the §', (¢, 7) and y'(o, T) denote generalized
derivatives, then equation (3. 1. 49) and the following ones remain valid by
using the concept of a generalized function and of a generalized Fourier theory
(ref L. 4, E.1, E. 2, L. 2, S.1,...).
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Using the Parseval relation, equation (3.1. 49) can be written
o0
Ry(T) =p(0, ") R_(0) + %T Sq&x(uw'*(-iu, T\du, 120 (3.1, 50)
-00
where o0
Pl¥(-iu, 7) = geiuc LIJ.(U', do .

0

In view of 00 o0 )
ye'Re(S’ T‘S‘qsx(u)du dr = ZwS‘RX(O)e-Re(S)Td-r <w , Rels)>0
0 -0 Q

we observe that the iterated integral

o0 o0
ge'sT §¢X<u>¢'*<-m, Tidudr , Re(s) >0
0

-0
is absolutely convergent; therefore, the order of integrations may be inter-

changed*. As a result, from equation (3.1. 50), we obtain

0
R¥(s) = (0, s) R (0) + = f ¢ (WY ~iu, s)du , Re(s) > 0 (3.1. 51)
-0

where
0
R'(s) - ge“STRy(T)dT (3.1. 52)
0
and ) o)
Yk -iu, 8) = ye-ST geluo Ylo, T)doe dr (3.1. 53)
0 0
Finally, in view of o
~iwT
= \e R d
¢y(w) ‘Sﬂ y( T) dT
=00

the spectral density ¢y(<.o) is obtained from

¢y(w) = R;j(m) + R;(-iw) i (3.1. 54)

*Tonelli-Hobson's theorem (ref G. 2, page 3).
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General remarks:

The preceding expressions for q)y(w) are formal since R;;(iw‘) and hence
¢y(w) might not exist in the usual function sense, but will have to be interpreted

in a generalized function sense.

In view of a possible evaluation of (3.1. 51) by residue methods, it is
interesting to notice that, in the u-plane, the upper-half plane does not contain
any poles of y"**(-iu, s) but only poles of ¢X(u); in the lower half-plane, we find

all the poles of y'*¥*(iu, s), in addition to poles arising from ¢X(u).

Because of

the iterated integral

V
o

00 [>¢]
Ll)'**('iu; S) = S‘e‘ST §GIUU Ll)'n(’o', T)dO’ dr 3 Re(S)
0 0

is absolutely convergent; it then follows* that

-sT iucs

emS-r LjJr'l((T, TVdrdo = e e LJ,A;I(O', Tyd{o, ) ,

o(/-)g
°—8

e o]
. iue
LlJ':?l*(-lu’ S) = S‘e
0

°l—3

where the double integral is absolutely convergent. From Lebesgue's conver-

gence theorem, it is easily seen that

(=i, 8) = 30 G'¥E(-iu, s) , Re(s) >0 . (3.1. 55)
n=1

3.1. 5,2 The case of independent sampling intervals

We shall evaluate y'"*¥*(-iu, s) and R;;(s) under the assumption that

L X .X are independent random variables and that all the x_, are

s .
-] -n

-—1 ’
identically distributed with density function f, (¢).

*Tonnelli-Hobson's theorem (ref G. 2).
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In view of (3. 1. 28), we have

o0

$ (-, 1) = g e 1, (o) fgl(xmw ST ¥)dxde
Y

0

and observing that this iterated integral is absolutely convergent, we obtain,

by interchanging the order of integrations, that

T 0 T T-X
S‘gl(x) S‘elugfl(cr)dc dx - S‘gl(x) Seludfl(c)dcr dx
0 0 0 0

T-X

f,( iu) S‘gl(x)dx - §g1 (x) §e1u(r filo)deo dx ;

0

1}

Uy *(-1u, )

then

®© T T-X

§, *¥(-iu, s = £)(- 1u)§ ggl(x)dxdT- e'Sngl(x)geiu“fl(o)dadxdT
0 0

0

(s - iu)
S

= (-1 B g

In view of the fact that for independent sampling intervals

1- (s
gi(s) = B —S—i—) ,
where
N S
B= — (3.1. 57)
gxfl(x)dx
0
we obtain

by -iu ) = p M i - £(s - 1w, Re(s) > 0 (3.1.58)

Forn> 1, from (3.1. 29), we have
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T-X

0 T
iue
-iu, T ge S‘gl(X)U(o -7 +x)§fl(c - v)fn_l(v) dvdxde ;
0

-

0 0

noticing that the iterated integrals

o0
S\gl(x S‘ eluUS‘f1 {0 - v)fn_l(v)dvd(r dx
T-X 0

T-X

T o0
S‘gl(x) S’fn_’l(v) gfi(c -V )elu(r do dvdx
0 T-X

0

are absolutely convergent, we may therefore interchange the order of inte-

grations and we obtain

T T-X o
o (-u, ) = gga(X) gfn_l(v)gflfv - vie' dr dvdx
0 0 0

T T-X T-X

- ggl (X)an-l(")gfl (¢ - v)elug do dvdx .
0
Observing that for v= 0

gfl (o - v)e' gfl(t)e At g - 1OV iy

and that

5 §f1(0' - ve™ do av = g tug gfl (¢ - WI__(Vidvdo

0

T=-X 0
e“m’gf1 (¢ - Vi (Vdvds
0 0

we can write
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T T-X
kP;l*(-iu, T) = f‘;::(-iu)Slgl (X)geluv fn-l (vidvdx
0 0

T-X 0

.
- ggl(x)geiuc gf,(c - V)fn_l(v)dv do dx .
0 0 0

Then * T
b (i, 8) = f==;<-iu>§e"“§gl<x>§emv fq(Vidvdxdr
0 a 0

o0 T T-X e ¢]
- ye'Sngl(x)ge“‘“ S‘fl(a - vf,_ (v)dvdo dxdr
0 0 0 0

and using convolution properties, we find

- o (s-iw fi(s-iwf_ (s-iw
¥ ¥, 9) = £ (-iwglls) S - gil(s) — :
that is
Palesk | _ 1 - f;::( S) %, s . 3% R n-1
G (-iu, s) = B ——Sz——[fl(—lu) - fi(s-iw] {f (s -iw}
,Re(s) > 0 . (3.1. 59)

Sumrnation of the infinite series (3.1. 55) gives

1 - £1(s) f1(-iu) - fi(s - iw

) ., Re(s) > 0 (3. 1. 60)

Ll)l**(—iu, S) _ ﬁ

1 -1, (s - iu)
Finally, in view of

o0
1
RX(O) 5 S‘¢X(u) du

-0
and

sk _ 1 - g;,k(s)
p (0: S) - g

we obtain from equation (3.1. 51) that
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Ry (0) Xs)
. +521TSI S\ () du , Re(s) > 0. (3.1.6])
1- fl(s—lu)

R;( s)

Remarks:

In the preceding calculations, it was assumed that fy(sc) is an ordinary
density function. In a generalized Laplace transform theory, these calculations

can be extended to include cases where f,(c) is a generalized density function

which contains §-functions. Also, we may observe that T f*(ls e has only
1
one pole u = -ig if X_, has a non-zero continuous component in its distribution

function and that it has an infinite number of poles if X 4 has a lattice distribu-

tion (ref L. 5, L. 6).

Examples:

i} If we take R.X(-r) =1, or as generalized spectral density ¢X('u) = 2w &(u),

we obtain
B _ 1

Ry(s) - S )

as it should be.
ii) If x(t) is such that

R (1) e'alTl ,a> 0 (3.1. 62)

or
_ 2a
el = T

evaluation of (3. 1. 61) by residue methods leads to

1-fi(s) £i{a)-1

R*(S) =% B 2 * , Re(s) > 0. (3.1. 63)
Y 1-f,(s+a)
For illustration, if we let
f?(s) = e—ST , B = % (periodic sampling)
or B
fi(s) = B (Poisson sampling)

»
+
]
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the results obtained agree with sections 3.1. 4.1 and 3.1. 4. 2.
iii) Finally, if
Rx(-r) = COS weT (3.1. 64)
or
? () = m[8(w - wo) + 6w + wo)]
then

1-fy(s)| fi(-iwg) -1 , f3(iwg) -1
2s2 : !

R;(s) =§+B Re(s)> 0. (3.1 65)

1-£,(s -iwg) 1-f,(s+iwo)

3.1. 5.3 An alternative expression for the spectrum

Here, we shall suppose that we can find two positive numbers r and v
such that
o0
w -
> \e

0
VTS'e“Lp;l(c, r)do dr < oo (3. 1. 66)
n=l g 0

or, what is equivalent, that

o0 0
ge_VTSeran'(cr, T)do dT < 0 . (3.1. 67)
(/] (/]

Before going on, we may first note that (3.1. 66) or (3.1. 67) are always
true withr = 0, v> 0. Let us mention that assumption\& 1. 66\)(or 3.1. 67) [with

r> 0, v 2 0] is not unduly restrictive: in fact,

i) If the point process {tn} is such that equation (3.1. 25) holds with
probability one [the sampling intervals are bounded from above], then equation
(3.1. 67) can be written

T+L 00

o0

- - +
ge VT gerd $'(o, T)do dr = S‘e VTer(T L) dr .
0 0

0

It then follows that condition (3. 1. 67) will be fulfilled if we take any positive

numbers r and v such that
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0<Kr<v<ow. (3.1.68)

ii) If the sampling intervals are independent random variables and if
there exists a positive number X such that*

[s.o]

S‘e)\o' filo) do < 0 (3.1. 69)
0

then it can be seen by calculations similar to the ones of section 3.1. 5. 2 that

condition (3. 1. 66) is fulfilled by taking any positive numbers r and v such that

O0<rs A, r<v . (3.1.70)

From equation (3. 1. 49), we obtain

o0 0

R;(S) = p*(0, )R _(0) +S‘e‘ST §RX(U)¢'(U, Tidodr ,  Re(s) > 0
0

and, by virtue of

o0

0 o0
(R (g (o)]e, mas ar = [ FAITR (0)ar <o,
0 0

0

we may interchange the order of integrations, so that

0
R;:(s) = p*(O, s)RX(O) + gRX(U)¢'=¥=(U, s)do , Re(s) > 0 (3.1.71)
0
where 0
u¥(c, s) ge’ST 7)dr.
0
Letting 00
R::(p) = gRX(G)e_pU do (3.1.72)

0

= r + 1iu, r>r
b R

*For the Poisson point process, X < p.
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where
rR =0 (3.1.73)

denotes the abscissa of absolute convergence for (3.1.72) and

o0 o}
y'#k(-p, 8) = S‘ S‘epvqﬂ(cr, T)do dr
0 0

) 00
= S‘ep(r ye_ST¢'(U, T)dT do
0 (]

p=r+iu , =v +iw , (3.1. 74)

We write, in view of the Parseval relation that

y[Rx(v)e'rU][¢'>’=(c, s)e’ "’ ldo = El?r yRi(r + i) (- r - iy, s)du
0 -00

and therefore

B3 sk 1 sk
RY(s) = 0710, IR (0) 5+ (R(p)y 4(-p, o)

-0
p=r+iu, s=v+tinw . (3.1.75)

Remark:

The preceding expression resembles equation (3.1. 51). However, it
is interesting to notice a certain advantage of equation (3.1.75): in the p-plane,
the left half plane Re(p) < r does not contain any poles of q;‘ *%(-p, 8); in the
right half plane Re(p) > r, we do not find any poles of R (p) This remark will

be useful whenever the integral of (3.1. 75) can be evaluated by residue methods.

The case of independent sampling intervals

A calculation similar to the one performed in section (3.1. 5. 2) leads to

R¥(g) = Lo gl(s) R (0)+g1(8)5' (- p) - fi(s - p) 4. (3.1.76)
y 1-fy(s - p)
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where

*
1- fI(S)

g (s) = B .

p=r+iu, s =v+iw

O0K<r<\, r<v
Note: N has been defined in (3. 1. 69).

Examples:

i) Poisson sampling

With equation (3. 1. 76) and

sk - B
we arrive at
0
E 1 52 1 S‘ 3k 1
. = 0) + - . S
Ry(s) s+ p Ry (0 B+s 2m Ry (p) (p-s)p-8 du
- =00
Evaluation by residues gives
e R_(0) 2 2 .
b3 X B sk ﬁ =k
. = + : - = _R
which is the same as (3. 1. 46).
ii) Periodic sampling with skips
Here, we have
" _ -sT
£i(g = Lode ~ (3.1.77)
-sT
l-qe
and . g . e_ST
gi(s) = —% =T (3.1.78)
s(l - ge )

From (3.1.76), we are led to



[e 0]
) -sT R_ (p)
g(s) -e X
R'(s) R_(0) + (1-qg.(s) [ du
X 2 . T T
s J e PT_ga (p-s)
p =r +1u 5 S = v +tilw
o<r<»\x , r<v
where
e Mg . (3.1.79)

The preceding expression can be evaluated by residue methods; first, we may
notice the strong convergence to zero of the integrand as |p| = « along any ray
which makes an angle < ~ with the real axis; then, we observe that in the right

2
half-plane Re(p) > r, we have a double infinity of poles defined as

P=\N*+niwg

1

p =s+niwg

2
where wq = % andn =0, +1, +2,... . Performing this residue evaluation and

using equation (3.1. 78}, we finally arrive at

£ - o sk =k b sk 0 sk
R;I(s) =1—%—(—S)RX(O) +g1(s)g1(-s){z Rx(s +inwg) - Z Rx(k+inwo)} (3.1. 80)

n=-oo n=-oo

or in terms of spectral density

sinz wT 0
b () = 2 ! {0 -a? 3 ¢.(0- nw
vy (9_2’1")2 1 - 2q cos T + g2 nea o X
Q0
+(1-q*)TR_(0) - 2(1 - q* 3 R (N + inwg) b (3.1. 81)
n=-o0

In view of the Poisson summation formula (ref D. 3, Z.1),

b4 RX(O)
R (N + inwg) = +
-0 X 2 n

AnT

Ms
s

1 -
——T— Rx(nT)e

1

and because of (3.1.79), equation (3. 1. 81) can be written as




- 103 -

.2 wT
sin —i' 1 2 0
¢y(w) = T 2 1 - Zq cos oT + qZ {(1 - q) _E ¢X(w - Nwo)
=) n=-c0

o0
+2a(l - QTR (0) - 21 - @*T T R (nT)q"}

n=1
Illustration: if x(t) is such that
R () = e @ a> o0
X
we obtain from (3.1. 82) that
2 (.L)T
sin® — -2aT
6 (@) = T 2 1 (-2 a-e 7
- + q2 - —
y (9;)2 1 -2q cos wT +q 1- 2e aT cos wT + e 2aT
1 - e-aT
+2q(l - Q) ———7 }
1 - qe
Remark:

In the absence of skips (q = 0), equation (3.1. 82) gives

sin? %1‘ )
p(0) = —z— T (o - ne

(5)? n=-w
as it should be.

3.2 The chopped and alternated random process

3. 2.1 Definition

(3. 1. 82)

The chopped and alternated random process y(t) is a continuous para-

meter process defined as

. n+j .
y(t) = (-1) X(tn), t <tst o

(3.2.1)

where j is a random variable taking on the values zero or one with equal proba-

bility (independently of x(t) and {tn}) and where x(t), {tn} are defined as in
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section 3.1.1.

3. 2. 2 Second-order statistics

First, we may note that

E[y(t)] = 0 (3. 2. 2)
ny('r) = Ryx(-r) =0 (3. 2.3)
and
Ely(t)?] = R (0) . (3. 2. 4)
Using the notations of section (3.1. 2) and definition (1. 2. 11), and
observing that
Ely(t)y(t - /A (t-7 7] = (-n" E[x(t_)x(t! )/A (t-, ]
we obtain as autocorrelation function
o0
ad n
= + - 2
Ry("‘) p(0, T)RX(O) n=1( 1) S‘Rx(c)dlpn(o*, T, T2 0 (3. 3.5)
where the Lpn('cr, 7) are defined by equation (3, 1.13).
Example: Periodic sampling
As in section 3.1. 4.1, we arrive at
=_n(n+1)T--r _ 17 -nT
R (7) = (-0 { === R [nT] - = R, [(n + D T]}
,nT<r<(n+1)T (3. 2.6)
, n =max{k|k5-,1r—}, k=012, ...
For the spectral density, we obtain
<2 wT
sin —2- o0 . 21
= — - + 5 =
¢>y(w) = > ¢X[w mh+3e ], o = . (3.2.7)

(_2_)2 n=-o
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From equation (3. 2. 6), we obtain a simple graphical construction of R ()
y

[see Fig. 3.3].

3. 2.3 Frequency analysis

As analogues of equations (3.1. 51) and (3.1.73), we obtain

0
sk b 1
Ry(S) =p (0, S)RX(O) + > gcpx(u) qJK*(—iu, s)du, Re{(s) > 0 (3. 2. 8)
=00
and o0
R (S) =p "0, s)R_(0) +—— SR “(p) llJA'""( p, s)du
=Q0
p=r+iu, s=v+iw , (3.2.9)
where
o0
§ e -p, 8) Z:) """ ©K(-p, s) . (3. 2.10)

For the case of independent sampling intervals, we have

R _(0) ¥
R (s) = ’; - gzlfrz) §¢ (u) 1M du , Re(s)> 0 (3. 2,11)
y 1+f1 (s -1iu)
where "
* 1-1
g (s) = ﬁ——é—@ (3. 2. 12)
or . ®
R>I=1(S) gls( )R (0 § fl(s' p) "fl( p)
Y % 1+1;(s - p)
p=r+iu, s =v+iw
(3. 2.13)
O0<r<iA, r<vwv
Examples:
i) Poisson sampling
Evaluation of expression (3, 2.13) by residues leads to
b Rx( O ) Bz sk sk
= : -R . . 2.
R(8) = 555+ (5ras [Rul2P+9) ~R ()] (3.2.14)
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Figure 3. 3. Graphical construction of Ry( 7).
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For illustration, if we take x(t) =1, that is

sk _ 1
RX(S) = g
we obtain « 1
Ryle) =z
or
_ 4pB
o) =

as it should be, in view of the fact that y(t) "is the random telegraph wave.

ii) Binary process

If x(t) =1, then y{t) is a binary process taking on the values of

+1. With

or

¢X(u) = 2w 8(u)
equation (3. 2.11.) gives
1-1,(s)
1+1 (s)
1

k1 1
Ry(S) ——é—— Zpgi B Re(s) >0 . (3. 2.15)

3.3 The random maneuver process

3.3.1 Definition
The random maneuver process y(t) is the continuous parameter random

process defined as

y(t) = a » b < tg tn+1 (3.3.1)

where {ozn} denotes a stationary random process which is independent of the

stationary point process {tn}.
This process could describe the random maneuvers of a target in space,

thus the designation.
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3.3. 2 Second-order statistics

Letting

@ =Ela |, p(n) = Ele ],

o
n+tm m

we have
Ely(t)] = o

and
Ely(t)2] = p(0)

In view of

Ely(t + ny(t) /A (t, )] = p(n), >0

it follows that

Q0
R (1) = > p(n)p(n, 7)
J n=0

where the p(n, ) are defined by equations (1. 3.1) and (1. 3. 2).
X% oo .
R_(s) = p(n)pT(n,s) , Re(s)>0
A2

Example:

Poisson sampling

From (1. 3.97) and (1. 4. 6), we obtain

i 1 §] n
p(n’S)_ﬁ+S {‘3'*'8}

and therefore

b 0
R(s) = L Ssvom {20

(3+s“U B+s

For the random telegraph wave, we choose
n
p(n) = (-1)

and we find 1

Ry(s) = s

as it should be.

Also

(3.

(3.

(3.

(3.

(3.

. 3)

. 4)

. 6)

(3.3.7)




Appendix A @

0
Higher-order statistics for the impulse process s(t) :n-’-E—oo ozné(t— tn)

Similarly to section 2.2., we can write

E[{s@t)s(t+7)s(t+m+72)]

(Lys N <N <L, <m+d) )

P
) 0207 . (Ln+m5"rl+'r2)r\('r1+'r2<Ln+m+1$-rl+'rZ+d)

=& L p(n, m) lim
n m G—>0 d3
for >0, 7, >0 (A.1.)
where

p(n, m) = E[ay an+1a’n+m+1] (A.2-)
and

L =0

o

In the case of independent intervals, and after studying in detail the cases

Tyl =d, |72] sd, |7+ 7] =d,...etc., we obtain, using some heuristics, that

28]
E[s(t)s(t+m)s(t+m+7;)]=Bp(0,0)8(m) 8(t;) +BHm )mE1 p(0, m)f_ (72)

OO0 [~ o]
+B8(72) Lt pln, 0)F_(r) +BLLZs_ p(n, m)£ (1) (7)),

for, 2 0., 7, 20 (A.3.)

and where fn(cr) is defined by equation (2.1.30.).
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In particular, if
a =1 (A.4.)

the preceding expression can be written

o0
E [s(t)s(t+Ty )s(t+T1,+7;) = B[ 6&(t) +r§1 fn('rl) J[8(T2) +§1.fm(-r,_) 1,

for = 0-, T,% O- (A.5.)

The preceding results can be generalized to include higher-orders; for

example, as in (A.5.), we also have

k-1 2
E [s(t)s(t+n)...s(t+m+ .. +n )] =BT [a(Tj)+nZ:}1 L) 1
j=1

for m, 2 0., ... -1 = 0. (A.6.)

Illustration: Poisson point process

In this case, equation (A.6.) gives the very simple expression

k-1
LRNCCARTRE (A.7.)

E[s(t)s(t+m) ..st+m+...+7 )] = B
3=l

k

This result is useful as a means of obtaining higher order statistics for the

secondary process

00
y =T -t ) . (A.8.)
From
e}
y(t) = S n(t- 7 s(n)dr
-
and using equation (A.7.), we obtain as an example
Y 0 0 o0
3
E[y(t)?] = BS n(e)’do + 2 B? Snw) do Sn(ﬂ"de + B2 S n(e)de )
So0 o0 =0 ' 00 ' '

(A.9.)
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Appendix ﬁ

An intuitive intrepretation for the distribution functions Fn(x).

Let us consider a stationary point process such that

G, (h)

lim —— =8 .1)
tm =, 7w
lim 520 o 8.2.)
h—>0

As in (1.2.14.), (1.2.15), we can write

n-1

P[x<L_(1)s x+adx] =k§0 P[E_ (t+x dx)] Pl: EAk(f;fi e :l
: n-k ’ ’

dx >0, x>0

and in view of the preceding assumptions, we obtain

At %) }
gn(x) =B ;;rr;OP [El(t+x, %) . B.3.)

Comparison with equations (1.3.36.), (1.3.37. ) shows that

[ Ao(t, x) ]
1- Fy(x) =d1;r20 Pl e & B.4.)
and | [ An_l(t’ x) ]

F__,(x)-F_(x) =di.(lino P| S an . (B.5.)

In order to interpret the right-hand sides of (B.4.), (B.5.), we shall
introduce the notion of a conditional description of a stationary point process:
let us consider an enumerable sequence of events which constitute a stationary

point process; suppose wWe are given that one or more events occur at the

- 111 -
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instant t = to; under these conditions [and as in section 1.1.1.] , we define the

random intervals

X(t)y=t -t

> 0, n=0, +1, +2, (B.6.)
n o n n-1 -

and say that the random process {Xn(to)} provides a conditional description

of the stationary point process.

P_i§cussion.
We would like to point out that the preceding concept [conditional description]
in ambiguous and arbitrary: indeed, what is actually
> ?
P[Xo(to) 7]
Using definitions (1.2.1.), (1.2.11.), we can write

At -7 71
(o]
El(toz 0)

{Xo(to) >} =

and since
P[E‘(to’ 0)] =0 ,
we have therefore

P[X (t) >1] = (B.7.)

ol o

*
Yet, one can give a sensible meaning to (B.7,) i) by limiting procedures:

one could define the value of (B.7.) as

P[X(t) >+]=lm P [A"(t"_t T)J (B.8.)
o o0 h =0 E‘(to’ h)
N P[X(t)>1]=1lim P[Ao(to-Th, T)] (B.9.)
°0 h—>0 Ey(t,-h h) -

* This is the usual procedure.
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and so on. Unfortunately, all these limits will be, in general, different: which

one, if any, is the right one?

ii) by sampling procedures:

Suppose we are given a sample of the stationary point process. Imagine
yourself measuring the time intervals between consecutive occurrences, thus
obtaining an empirical [or ""time-averaging''] distribution function P[ X = x] ,
where XO denotes the time interval between any two consecutive occurrences.

Then the value of (B.7.) could be defined as

P{X (t)>7] =P[X_ >1]. (B.10:)

How do we reconcile these different views ? This seems very difficult and

perhaps impossible.

However, there are some known stationary point processes [for instance, the
periodic point process where X0= T] for which the different values obtained
from (B.8.), (B.9.), (B.10.) all agree, thus giving a somewhat iégitimate meaning

to Xo(to). In such a case, it would follow from (B.10.), B 8.), (B.4.) that
F,(x) = P[ Xo < x] (B.11.)

thus providing a possible interpretation for F,(x). Moreover, notice that in

view of (1.3.61.), we have

B = . (B.12.)

The preceding discussion can be repeated for all the Xn(to) and similarly

it may be seen that

= +X L
F (x) = P[X_+X% X

=] (B.13.)

where X0+X1 +...+X . denotes the time interval between any occurrence and
n—

1
the r}h following one.
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Glossary of Principal Symbols

The symbols listed below are those frequently used throughout this dis-
sertation. Symbols defined and used incidentally in the derivation of formulae
are not included.

n occurrences in
= 0
An(t’ ™) the interval (t,t + ]\ °~ © >

a, = Amplitude error in sampling
Cliwy = E[e™™"]
E[ ] = Stands for statistical expectation

at least n occurrences
En(t,'r) = , > 0
in the interval {t, t + 7]

e = Time-jitter error before sampling

F(o,7) = Defined by (3.1.16)

F (x) = Defined by (1. 3. 36), (1. 3.37)
n dF (x)
f (x) s 2 ae.
n dx
[o o]
* -8x
fn( s) = oSe an(x)

[In the case of independent intervals, we have

fz(S) (o} = {Ele” ¥l ]

Gn('r) = P[Ln < 7]
d G (x)
n
gn(X) = —_d-}_(-_ a. e
)
g:(s) - ge'sxd G_(x)
o~
_ E[e'SLn]
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Transfer function for the optimum linear interpolator
Interpolation function
, th

Passage time for the n~ forward occurrence

. . th
Time elapsed since then  backward occurrence
Random number of occurrences in the interval (t,t + 7]
Probability measure
P[N(t, 7) = n]
The probability of skipping an occurrence
Generalized correlation function for s(t)

Correlation function for x(t)

o]

ge—STRX( T) dT

\]
00

The impulse process, i.e., s(t) = ] @ 5(t - tn)

n=-o0
Time interval for the periodical point process

Ln+1 - Ln

Modulating factors in the impulse process

E[afn]

Average number of occurrences per unit time
Time-jitter error after sampling

Generalized spectral density for the impulse process

Spectral density for x(t) [possibly generalized]

o
_ d(o, T)
521 q;n(c, T} = T a.e



L,J;l(U, 1) = Defined by (3. 1. 20)

© o
YIHH(-p, 8) = ge“s*yep"%(q, 7)
¢ °
0
LK(-p, 8) = 3 g LEH(-p, 8)
n=i
- n
lph**('p: S) = Z: ('1) ¢'**('p) S)
n=1

ylie) = E[e 1]

y(e,7) = Defined by (3. 1.12)
p(n) = Ele_ o ]
2 = 2
o E[an]
L
wo T
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MASSA\CHUSETTS INSTITUTE OF TECHNOLOGY
\f_;' e LINCOLN LABORATORY
R T -LEXINGTON, MASSACHUSETTS 02173
L 8 March 1965

R Area Code 617
S 862-5500

Miss Winnie M. Morgan

Technical Reports Office

National Aeronautics and Space Administration
Washington, D. C. 20546

Re: SC-NsG=2/23-05-001 N 65 -1804 8

Dear Miss Morgan:

I have received your letter of March 2, 1965 concerning the
publication of my Technical Report, "Stationary Point Processes
and Their Application to Random Sampling of Stochastic Processes."
There are two minor changes I would like to make.

1) I wish to eliminate Appendix A, both in the Table of
Contents and also on pages 109-110. Appendix B,
pages 111-113 will therefore become Appendix A, thus
(B. 1) will become (A.1), etc....

2) Also, Eq. (2.4.49) page 72 should be

(e-a[tl_ ea[tl e-ZaT
=T , Oo<ltl=T
l1~e
hee) =
0 R otherwise
\ .

-

1 wish to thank the National Aeronautics and Space Administration
for publishing my report and I shall be glad to be of further help if it
is needed.

Sincerely yours,

EEW&:Q\

Dr. O.A.Z.Leneman

OAZL:smm




